用“压缩映射”原理证明数列收敛

本文详细介绍了如何使用压缩映射原理来证明数列的收敛性,并给出了两个具体的应用示例,包括求解特定数列的极限。通过对可微函数的微分中值定理的应用,证明了数列满足压缩映射条件,从而得出数列收敛的结论。
摘要由CSDN通过智能技术生成

用“压缩映像”原理证明数列收敛

定理

1 ∘ 1^{\circ} 1 对于任一数列 { x n } \left\{x_{n}\right\} { xn}而言,若存在常数 r, 使得 ∀ n ∈ N \forall n \in \mathbf{N} nN, 桓有

∣ x n + 1 − x n ∣ ⩽ r ∣ x n − x n − 1 ∣ , 0 < r < 1 → ( A ) \left|x_{n+1}-x_{n}\right| \leqslant r\left|x_{n}-x_{n-1}\right|,0< r< 1\rightarrow(A) xn+1xnrxnxn1,0<r<1(A)

则数列 { x n } \left\{x_{n}\right\} { xn}收敛.


2 ∘ 2^{\circ} 2特别,若数列 { x n } \left\{x_{n}\right\} { xn} 利用递推公式给出:

x n + 1 = f ( x n ) ( n = 1 , 2 , ⋯   ) x_{n+1}=f\left(x_{n}\right)(n=1,2, \cdots) xn+1=f(xn)(n=1,2,), 其中 f 为某一可微函数,且 ∃ r ∈ R \exists r\in R rR,使得

∣ f ′ ( x ) ∣ ⩽ r < 1 ( ∀ x ∈ R ) → ( B ) \left|f^{\prime}(x)\right| \leqslant r<1 \quad(\forall x \in \mathbf{R}) \rightarrow(B) f(x)r<1(xR)(B)

{ x n } \left\{x_{n}\right\} { xn}收敛.

证明

1 ∘ 1^{\circ} 1

 此时  ∣ x n + p − x n ∣ ⩽ ∑ k = n + 1 n + p ∣ x k − x k − 1 ∣ ⩽ ∑ k = n + 1 n + p r k − 1 ∣ x 1 − x 0 ∣ = ∣ x 1 − x 0 ∣ ⋅ r n − r n + p 1 − r ⩽ ∣ x 1 − x 0 ∣ r n 1 − r \begin{array}{l} \text { 此时 }\left|x_{n+p}-x_{n}\right| &\leqslant \sum_{k=n+1}^{n+p}\left|x_{k}-x_{k-1}\right| \\ &\leqslant \sum_{k=n+1}^{n+p} r^{k-1}\left|x_{1}-x_{0}\right|\\ &=\left|x_{1}-x_{0}\right| \cdot \frac{r^{n}-r^{n+p}}{1-r} \\ &\leqslant\left|x_{1}-x_{0}\right| \frac{r^{n}}{1-r} \end{array}  此时 xn+pxnk=n+1

设 $(X,d)$ 为完备度量空间,$T:X\rightarrow X$ 是一个压缩映射,即存在 $0\leq k<1$ 使得对于任意 $x,y\in X$,有 $d(Tx,Ty)\leq kd(x,y)$。我们考虑由 $T$ 构造的迭代序列 $\{x_n\}$,即 $x_0\in X$,$x_{n+1}=Tx_n$。 首先证明 $\{x_n\}$ 是一个柯西序列。对于任意 $n,m\in \mathbb{N}$,不妨假设 $m>n$,则有 \begin{aligned} d(x_n,x_m)&=d(Tx_{n-1},Tx_{m-1})\\ &\leq kd(x_{n-1},x_{m-1})\\ &\leq k^2d(x_{n-2},x_{m-2})\\ &\cdots\\ &\leq k^{m-n}d(x_0,x_0) \end{aligned} 因为 $0\leq k<1$,所以当 $m-n$ 充分大时,$k^{m-n}$ 可以任意小,因此 $\{x_n\}$ 是一个柯西序列。 由于 $(X,d)$ 是完备度量空间,因此 $\{x_n\}$ 收敛于 $x\in X$。我们接下来证明 $x$ 是 $T$ 的不动点,即 $Tx=x$。 由于 $T$ 是压缩映射,因此对于任意 $n\in \mathbb{N}$,有 $$d(Tx,x)=d(Tx,T^n x)+d(T^n x,x)\leq \sum_{i=0}^{n-1}d(T^{i+1}x,T^ix)\leq \sum_{i=0}^{n-1}k^id(x,x_0)$$ 因为 $0\leq k<1$,所以当 $n$ 充分大时,$\sum_{i=0}^{n-1}k^i$ 可以任意小,因此有 $d(Tx,x)=0$,即 $Tx=x$,即 $x$ 是 $T$ 的不动点。 接下来我们估计迭代收敛速度。由于 $T$ 是一个压缩映射,因此对于任意 $n\in \mathbb{N}$,有 $$d(x_{n+1},x_n)=d(Tx_n,Tx_{n-1})\leq kd(x_n,x_{n-1})\leq k^{n}d(x_1,x_0)$$ 因此,当 $n$ 充分大时,$d(x_{n+1},x_n)$ 可以任意小。如果我们定义 $e_n=d(x_n,x)$,则有 $$d(x_{n+1},x)=d(Tx_n,x)=d(Tx_n,Tx)+d(Tx,x)\leq kd(x_n,x)+d(Tx_n,x)=ke_n+de_{n-1}$$ 因此,当 $n$ 充分大时,$e_n$ 满足以下递推关系: $$e_n\leq ke_{n-1}+de_{n-2}\leq k^2e_{n-2}+de_{n-3}\leq \cdots\leq k^ne_0+de_{n-1}$$ 其中 $e_0=d(x_0,x)$。因此,我们得到了一个上界估计式:$e_n\leq \frac{d(x_1,x_0)}{1-k}k^n$。 综上所述,完备度量空间由压缩映射构造的迭代一定收敛于不动点,且收敛速度是指数级别的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值