打洞原理→分块乘法的初等变换及应用举例
将分块乘法与初等变换结合是矩阵运算中极重要的手段.
现将某个单位矩阵如下进行分块:
( E m O O E n ) \left(\begin{array}{cc} {E}_{m} & {O} \\ {O} & {E}_{n} \end{array}\right) (EmOOEn)
对它进行两行(列)对换,某一行(列)左乘(右乘)一个矩阵 P P P , 一行(列)加上另一行(列)的 P P P( 矩阵) 倍数,就可得到如下类型的一些矩阵:
( 1 ) 对 它 进 行 两 行 ( 列 ) 对 换 → \textcolor{teal}{(1)对它进行两行(列)对换\rightarrow} (1)对它进行两行(列)对换→
( O E n E m O ) \left(\begin{array}{cc} O & E_{n} \\ E_{m} & O \end{array}\right) (OEmEnO)
( 2 ) 某 一 行 ( 列 ) 左 乘 ( 右 乘 ) 一 个 矩 阵 P → \textcolor{teal}{(2)某一行(列)左乘(右乘)一个矩阵P\rightarrow} (2)某一行(列)左乘(右乘)一个矩阵P→
( P O O E n ) , ( E m O O P ) \left(\begin{array}{cc} P & O \\ O & E_{n} \end{array}\right),\left(\begin{array}{cc} E_{m} & O \\ O & P \end{array}\right) (POOEn),(EmOOP)
( 3 ) 一 行 ( 列 ) 加 上 另 一 行 ( 列 ) 的 P ( 矩 阵 ) 倍 数 → \textcolor{teal}{(3)一行(列)加上另一行(列)的 P(矩阵) 倍数\rightarrow} (3)一行(列)加上另一行(列)的P(矩阵)倍数→
( E m P O E n ) , ( E m O P E n ) \left(\begin{array}{cc} E_{m} & P\\ O & E_{n} \end{array}\right),\left(\begin{array}{cc} E_{m} & O \\ P & E_{n} \end{array}\right) (EmOPEn),(EmPOEn)
和初等矩阵与初等变换的关系一样,用这些矩阵左乘任一个分块矩阵
( A B C D ) \left(\begin{array}{ll} A & B \\ C & D \end{array}\right) (ACBD)
只要分块乘法能够进行,其结果就是对它进行相应的变换:
( O E m E n O ) ( A B C D ) = ( C D A B ) \left(\begin{array}{cc} {O} & {E}_{m} \\ {E}_{n} & {O} \end{array}\right){\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)} =\left(\begin{array}{ll} {C} & {D} \\ {A} & {B} \end{array}\right) (OEnEmO)(ACBD)=(CADB)
( P O O E n ) ( A B C D ) = ( P A P B C D ) \left(\begin{array}{ll} P & O \\ O & E_{n} \end{array}\right){\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)} =\left(\begin{array}{cc} P A & P B \\ C & D \end{array}\right) (POOEn)(ACBD)=(PACPBD)
( E m O P E n ) ( A B C D ) = ( A B C + P A D + P B ) \left(\begin{array}{cc} {E}_{m} & {O} \\ {P} & {E}_{n} \end{array}\right) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)} =\left(\begin{array}{cc} {A} & {B} \\ {C}+{P A} & {D}+{P B} \end{array}\right) (EmPOEn)(ACBD)=(AC+PABD+PB)
在左乘第 ( 3 ) (3) (3)个式子中,适当选择 P P P,可使 C + P A = O C+P A=O C+PA=O . 例如 A A A 可逆时,选 P = − C A − 1 \textcolor{red}{P=-C A^{-1}} P=−CA−1, 则 C + P A = O C+PA=O C+PA=O . 于是 ( 3 ) (3) (3) 的右端成为
( A B O D − C A − 1 B ) \left(\begin{array}{cc} A & B \\ O & {\color{red} D-C A^{-1} B} \end{array}\right) (AOBD−CA−1B)
同样,用它们右乘任一矩阵,进行分块乘法时也有相应的结果。
( A B C D ) ( O E m E n O ) = ( B A D C ) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)}\left(\begin{array}{cc} {O} & {E}_{m} \\ {E}_{n} & {O} \end{array}\right)=\left(\begin{array}{ll} {B} & {A}\\ {D} & {C} \end{array}\right) (ACBD)(OEnEmO)=(BDAC)
( A B C D ) ( P O O E n ) = ( A P B C P D ) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)}\left(\begin{array}{ll} P & O \\ O & E_{n} \end{array}\right)=\left(\begin{array}{cc} AP& B \\ CP & D \end{array}\right) (ACBD)(POOEn)=(APCPBD)
( A B C D ) ( E m P O E n ) = ( A A + B P C D + C P ) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)}\left(\begin{array}{cc} {E}_{m} & {P} \\ {O} & {E}_{n} \end{array}\right)=\left(\begin{array}{cc} {A}& A +BP \\ {C} & D +CP \end{array}\right) (ACBD)(EmOPEn)=(ACA+BPD+CP)
在右乘第 ( 3 ) (3) (3)个式子中,适当选择 P P P,可使 A + B P = O A +BP =O A+BP=O . 例如 B B B 可逆时,选 P = − A − 1 B \textcolor{red}{P=-A^{-1}B} P=−A−1B, 则 A + B P = O A +BP =O A+BP=O . 于是 ( 3 ) (3) (3) 的右端成为
( A O C D − C A − 1 B ) \left(\begin{array}{cc} A & O \\ C & {\color{red} D-C A^{-1} B} \end{array}\right) (ACOD−CA−1B)
这种形状的矩阵在求行列式,逆矩阵和解决其他问题时是比较方便的,因此 ( 3 ) (3) (3) 中的运算非常有用.
打洞原理→任意一个矩阵经过一系列初等行变换总能变成阶梯形矩阵
左乘——A干掉C (C处为O)
∣ A B C D ∣ = ∣ E m O − C A − 1 E n ∣ ∣ A B C D ∣ = ∣ A B O D − C A − 1 B ∣ {\color{teal} \left|\begin{array}{ll} A & B \\ C & D \end{array}\right|}=\left|\begin{array}{cc} {E}_{m} & {O} \\ \textcolor{red}{-C A^{-1}} & {E}_{n} \end{array}\right|{\color{teal} \left|\begin{array}{ll} A & B \\ C & D \end{array}\right|}=\left|\begin{array}{cc} A & B \\ {\color{blue}O} & {\color{red} D-C A^{-1} B} \end{array}\right| ∣∣∣∣ACBD∣∣∣∣=∣∣∣∣Em−CA−1OEn∣∣∣∣∣∣∣∣ACBD∣∣∣∣=