高代→打洞原理→ 分块乘法的初等变换及应用举例

本文介绍了如何利用打洞原理和分块乘法的初等变换,将矩阵转化为阶梯形矩阵,并展示了在求行列式、逆矩阵等问题中的应用。通过具体的例子,如求逆矩阵和证明行列式乘积公式,阐述了这些方法的实际操作和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

打洞原理→分块乘法的初等变换及应用举例

将分块乘法与初等变换结合是矩阵运算中极重要的手段.

现将某个单位矩阵如下进行分块:

( E m O O E n ) \left(\begin{array}{cc} {E}_{m} & {O} \\ {O} & {E}_{n} \end{array}\right) (EmOOEn)

对它进行两行(列)对换,某一行(列)左乘(右乘)一个矩阵 P P P , 一行(列)加上另一行(列)的 P P P( 矩阵) 倍数,就可得到如下类型的一些矩阵:

( 1 ) 对 它 进 行 两 行 ( 列 ) 对 换 → \textcolor{teal}{(1)对它进行两行(列)对换\rightarrow} (1)()

( O E n E m O ) \left(\begin{array}{cc} O & E_{n} \\ E_{m} & O \end{array}\right) (OEmEnO)

( 2 ) 某 一 行 ( 列 ) 左 乘 ( 右 乘 ) 一 个 矩 阵 P → \textcolor{teal}{(2)某一行(列)左乘(右乘)一个矩阵P\rightarrow} (2)()()P

( P O O E n ) , ( E m O O P ) \left(\begin{array}{cc} P & O \\ O & E_{n} \end{array}\right),\left(\begin{array}{cc} E_{m} & O \\ O & P \end{array}\right) (POOEn),(EmOOP)

( 3 ) 一 行 ( 列 ) 加 上 另 一 行 ( 列 ) 的 P ( 矩 阵 ) 倍 数 → \textcolor{teal}{(3)一行(列)加上另一行(列)的 P(矩阵) 倍数\rightarrow} (3)()()P()

( E m P O E n ) , ( E m O P E n ) \left(\begin{array}{cc} E_{m} & P\\ O & E_{n} \end{array}\right),\left(\begin{array}{cc} E_{m} & O \\ P & E_{n} \end{array}\right) (EmOPEn),(EmPOEn)

和初等矩阵与初等变换的关系一样,用这些矩阵左乘任一个分块矩阵

( A B C D ) \left(\begin{array}{ll} A & B \\ C & D \end{array}\right) (ACBD)

只要分块乘法能够进行,其结果就是对它进行相应的变换:

( O E m E n O ) ( A B C D ) = ( C D A B ) \left(\begin{array}{cc} {O} & {E}_{m} \\ {E}_{n} & {O} \end{array}\right){\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)} =\left(\begin{array}{ll} {C} & {D} \\ {A} & {B} \end{array}\right) (OEnEmO)(ACBD)=(CADB)

( P O O E n ) ( A B C D ) = ( P A P B C D ) \left(\begin{array}{ll} P & O \\ O & E_{n} \end{array}\right){\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)} =\left(\begin{array}{cc} P A & P B \\ C & D \end{array}\right) (POOEn)(ACBD)=(PACPBD)

( E m O P E n ) ( A B C D ) = ( A B C + P A D + P B ) \left(\begin{array}{cc} {E}_{m} & {O} \\ {P} & {E}_{n} \end{array}\right) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)} =\left(\begin{array}{cc} {A} & {B} \\ {C}+{P A} & {D}+{P B} \end{array}\right) (EmPOEn)(ACBD)=(AC+PABD+PB)

左乘 ( 3 ) (3) (3)个式子中,适当选择 P P P,可使 C + P A = O C+P A=O C+PA=O . 例如 A A A 可逆时,选 P = − C A − 1 \textcolor{red}{P=-C A^{-1}} P=CA1, 则 C + P A = O C+PA=O C+PA=O . 于是 ( 3 ) (3) (3) 的右端成为

( A B O D − C A − 1 B ) \left(\begin{array}{cc} A & B \\ O & {\color{red} D-C A^{-1} B} \end{array}\right) (AOBDCA1B)

同样,用它们右乘任一矩阵,进行分块乘法时也有相应的结果。

( A B C D ) ( O E m E n O ) = ( B A D C ) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)}\left(\begin{array}{cc} {O} & {E}_{m} \\ {E}_{n} & {O} \end{array}\right)=\left(\begin{array}{ll} {B} & {A}\\ {D} & {C} \end{array}\right) (ACBD)(OEnEmO)=(BDAC)

( A B C D ) ( P O O E n ) = ( A P B C P D ) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)}\left(\begin{array}{ll} P & O \\ O & E_{n} \end{array}\right)=\left(\begin{array}{cc} AP& B \\ CP & D \end{array}\right) (ACBD)(POOEn)=(APCPBD)

( A B C D ) ( E m P O E n ) = ( A A + B P C D + C P ) {\color{teal} \left(\begin{array}{ll} A & B \\ C & D \end{array}\right)}\left(\begin{array}{cc} {E}_{m} & {P} \\ {O} & {E}_{n} \end{array}\right)=\left(\begin{array}{cc} {A}& A +BP \\ {C} & D +CP \end{array}\right) (ACBD)(EmOPEn)=(ACA+BPD+CP)

右乘 ( 3 ) (3) (3)个式子中,适当选择 P P P,可使 A + B P = O A +BP =O A+BP=O . 例如 B B B 可逆时,选 P = − A − 1 B \textcolor{red}{P=-A^{-1}B} P=A1B, 则 A + B P = O A +BP =O A+BP=O . 于是 ( 3 ) (3) (3) 的右端成为

( A O C D − C A − 1 B ) \left(\begin{array}{cc} A & O \\ C & {\color{red} D-C A^{-1} B} \end{array}\right) (ACODCA1B)

这种形状的矩阵在求行列式,逆矩阵和解决其他问题时是比较方便的,因此 ( 3 ) (3) (3) 中的运算非常有用.

打洞原理→任意一个矩阵经过一系列初等行变换总能变成阶梯形矩阵

左乘——A干掉C (C处为O)

∣ A B C D ∣ = ∣ E m O − C A − 1 E n ∣ ∣ A B C D ∣ = ∣ A B O D − C A − 1 B ∣ {\color{teal} \left|\begin{array}{ll} A & B \\ C & D \end{array}\right|}=\left|\begin{array}{cc} {E}_{m} & {O} \\ \textcolor{red}{-C A^{-1}} & {E}_{n} \end{array}\right|{\color{teal} \left|\begin{array}{ll} A & B \\ C & D \end{array}\right|}=\left|\begin{array}{cc} A & B \\ {\color{blue}O} & {\color{red} D-C A^{-1} B} \end{array}\right| ACBD=EmCA1OEnACBD=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值