【LEACH】WSN路由模型基础
如今论文界有关WSN/IoT路由协议能耗计算的模型,基本都是沿用LEACH作者在20年前提出的。
鄙人认为,如果你想以发论文为目的深耕这个领域,还是非常有必要将这个底层模型的来龙去脉搞清楚的。
如果你理解了这个模型的本质,甚至可以从模型推导中建立与别的通信概念比如无人机、IRS、CB等的统一能耗模型。
请注意,模型只是对现实世界的一种数学刻画,所以模型本身有瑕疵是很正常的,不必钻牛角尖。
1、经典WSN能耗模型
将下面这个模型称为**”经典模型“**,接下来几个小节将逐步推导出这个经典模型:
E
T
(
b
,
d
)
=
{
b
⋅
E
e
l
e
c
+
b
⋅
ε
f
s
⋅
d
2
,
d
<
d
c
r
o
s
s
o
v
e
r
b
⋅
E
e
l
e
c
+
b
⋅
ε
a
m
p
⋅
d
4
,
d
≥
d
c
r
o
s
s
o
v
e
r
,
(1)
\Large E_{T}(b,d)=\left\{\begin{array}{l l}{{b\cdot E_{e l e c}+b\cdot\varepsilon_{f s}\cdot d^{2},\quad d<d_{crossover}}}\\ {{b\cdot E_{e l e c}+b\cdot\varepsilon_{a m p}\cdot d^{4},\quad d\geq d_{crossover},}}\end{array}\right.\tag{1}
ET(b,d)=⎩
⎨
⎧b⋅Eelec+b⋅εfs⋅d2,d<dcrossoverb⋅Eelec+b⋅εamp⋅d4,d≥dcrossover,(1)
参考文献:
[1] Application-Specific Protocol Architectures for Wireless Networks
URL链接:Application-specific protocol architectures for wireless networks (mit.edu)
[2] An application-specific protocol architecture for wireless microsensor networks
2、基本模型
Channel Propagation Model
- 当距离d小于特定数值时,使用自由空间模型(Friss free space model - d 2 d^2 d2 attenuation)
- 当距离d大于特定数值时,使用两射线地面传播模型进行衰减(Two-ray ground propagation model -
d
4
d^4
d4attenuation)
- Two-ray ground propagation model 示意图:传送门(文章2.4小节)
- Two-ray ground propagation model 示意图:传送门(文章2.4小节)
“特定数值” :交叉点定义为: d crossover = 4 π L h r h t λ \Large d_{\text {crossover }}=\frac{4 \pi \sqrt{L} h_{r} h_{t}}{\lambda} dcrossover =λ4πLhrht
-
L ≥ 1 \Large L \geq 1 L≥1是与传播无关的系统损耗因子。
-
h r h_r hr和 h t h_t ht是接收天线和发射天线的地面高度
-
λ \lambda λ是载波波长
自由空间模型 && two-ray ground propagation 模型:
P
r
(
d
)
=
{
P
t
G
t
G
r
λ
2
(
4
π
d
)
2
L
,
d
<
d
c
r
o
s
s
o
v
e
r
P
t
G
t
G
r
h
t
2
h
r
2
d
4
,
d
≥
d
c
r
o
s
s
o
v
e
r
,
(1,1)
\Large P_r(d)=\left\{\begin{array}{l l}{{\frac{P_tG_tG_r\lambda^2}{(4 \pi d)^2L},\quad d<d_{crossover}}}\\ {{\frac{P_tG_tG_rh_t^2h_r^2}{d^4},\quad d\geq d_{crossover},}}\end{array}\right. \tag{1,1}
Pr(d)=⎩
⎨
⎧(4πd)2LPtGtGrλ2,d<dcrossoverd4PtGtGrht2hr2,d≥dcrossover,(1,1)
3、 ε f s ⋅ ε a m p \varepsilon_{f s}\cdot\varepsilon_{a m p} εfs⋅εamp来源
我们将发送方的能耗定义为如下两个部分:电路能耗 + 放大器能耗(通信能耗)
E
T
(
b
,
d
)
=
E
T
x
−
e
l
e
c
(
b
)
+
E
T
x
(
b
,
d
)
(1,2)
\Large E_{T}(b, d)=E_{T x-e l e c}(b)+E_{T x}(b, d) \tag{1,2}
ET(b,d)=ETx−elec(b)+ETx(b,d)(1,2)
此时我们假定一个固定的传输速率
R
b
\Large R_b
Rb,那么发射功率
P
t
\Large P_t
Pt可以定义为:每比特传输能量 × 比特率,即:
P
t
=
E
T
x
(
1
,
d
)
R
b
(1,3)
\Large P_{t}=E_{Tx}\left(1,d\right)R_{b}\tag{1,3}
Pt=ETx(1,d)Rb(1,3)
在自由空间模型中,我们知道信号呈
d
2
\Large d^2
d2衰减,每比特传输能量可以定义为:(引入一个常数
ε
f
s
\Large \varepsilon_{f s}
εfs)
E
T
x
(
1
,
d
)
=
ε
f
s
d
2
(1,4)
\Large E_{Tx}\left(1,d\right) = \varepsilon_{f s}d^2\tag{1,4}
ETx(1,d)=εfsd2(1,4)
所以发射功率
P
t
\Large P_t
Pt可以进一步展开为:
P
t
=
ε
f
s
R
b
d
2
(1,5)
\Large P_{t}=\varepsilon_{f s}R_{b}d^2\tag{1,5}
Pt=εfsRbd2(1,5)
同理,在Two-ray ground propagation模型中,信号呈
d
4
\Large d^4
d4衰减,每比特传输能量可以定义为:(引入一个常数
ε
a
m
p
\Large \varepsilon_{amp}
εamp)
E
T
x
(
1
,
d
)
=
ε
a
m
p
d
4
(1,6)
\Large E_{Tx}\left(1,d\right) = \varepsilon_{amp}d^4\tag{1,6}
ETx(1,d)=εampd4(1,6)
所以发射功率
P
t
\Large P_t
Pt可以进一步展开为:
P
t
=
ε
a
m
p
R
b
d
4
(1,7)
\Large P_{t}=\varepsilon_{amp}R_{b}d^4\tag{1,7}
Pt=εampRbd4(1,7)
总结上述关于发射功率
P
t
\Large P_t
Pt的推导,可得如下表达式:
P
t
=
{
ε
f
s
R
b
d
2
,
d
<
d
c
r
o
s
s
o
v
e
r
ε
a
m
p
R
b
d
4
,
d
≥
d
c
r
o
s
s
o
v
e
r
(1,8)
\Large P_{t}=\left\{\begin{array}{c c c}{{\varepsilon_{fs}R_{b}d^{2}}}&{{,}}&{{d<d_{c r o s s o v e r}}}\\ {{\varepsilon_{amp}R_{b}d^{4}}}&{{,}}&{{d\geq d_{c r o s s o v e r}}}\end{array}\right.\tag{1,8}
Pt=⎩
⎨
⎧εfsRbd2εampRbd4,,d<dcrossoverd≥dcrossover(1,8)
此时我们进一步定义一个最小接收信号功率 P r − t h r e s h = 6.3 n W \Large P_{r-thresh} = 6.3 nW Pr−thresh=6.3nW来保证通信的质量,我们联立**(1, 8)以及(1, 1)**
即可得到计算式:
ε f s = P r − t h r e s h ( 4 π ) 2 R b G t G r λ 2 (1,9) \Large \varepsilon_{fs}=\frac{P_{r-t h r e s h}(4\pi)^{2}}{R_{b}G_{t}G_{r}\lambda^{2}} \tag{1,9} εfs=RbGtGrλ2Pr−thresh(4π)2(1,9)
ε a m p = P r − t h r e s h R b G t G r h t 2 h r 2 (1,10) \Large \varepsilon_{a m p}=\frac{P_{r-t h r e s h}}{R_{b}G_{t}G_{r}h_{t}^{2}h_{r}^{2}}\tag{1,10} εamp=RbGtGrht2hr2Pr−thresh(1,10)
重点来了,这时模型的作者直接假定实验条件:
也就是说,这个模型**内部隐藏条件(约定)**如下:
- G t = G r = 1 G_t = G_r = 1 Gt=Gr=1
- h t = h r = 1.5 m h_t = h_r = 1.5m ht=hr=1.5m
- λ = 0.328 m \lambda = 0.328m λ=0.328m
- R b = 1 Mbps R_b = 1\ \text{Mbps} Rb=1 Mbps
带入这些条件(约定),即可求得:
ε
f
s
=
10
pJ/bit/m
2
(1,11)
\Large \varepsilon_{fs}=10 \ \text{pJ/bit/m}^2 \tag{1,11}
εfs=10 pJ/bit/m2(1,11)
ε a m p = 0.0013 pJ/bit/m 4 (1,12) \Large \varepsilon_{a m p}=0.0013 \ \text{pJ/bit/m}^4 \tag{1,12} εamp=0.0013 pJ/bit/m4(1,12)
最后,我们将(1, 11)(1, 12)分别带入(1, 4) (1, 6),再根据 E T x ( b , d ) = b ∗ E T x ( 1 , d ) E_{T x}(b, d) = b * E_{Tx}\left(1,d\right) ETx(b,d)=b∗ETx(1,d)带回公式(1,2),即可推出**”经典模型“**的表达式。
4、个人结论
关于这个黑盒”经典模型“:
- 模型内部约定了传输速率 R b = 1 Mbps R_b = 1\ \text{Mbps} Rb=1 Mbps等参数
- 模型的长距离能耗模型由Two-Ray Model 推导而来
- 模型约定了通信过程中,接收端的信号功率为
P
r
−
t
h
r
e
s
h
=
6.3
n
W
P_{r-thresh} = 6.3 nW
Pr−thresh=6.3nW,同时可以反推发送信号功率
P
t
P_t
Pt
- 模型内部的接收端的信号功率可以视为定值。
- 发送信号功率为变值(由距离决定)。
5、其他细节
5.1、电路损耗常数 E e l e c E_{elec} Eelec的计算方法:(根据硬件测量得来)
E e l e c = Total Energy Consumed Size of Data Packet (1,13) \Large E_{elec} = \frac{{\text{Total Energy Consumed}}}{{\text{Size of Data Packet}}}\tag{1,13} Eelec=Size of Data PacketTotal Energy Consumed(1,13)
5.2、 P r − t h r e s h = 6.3 n W P_{r-thresh} = 6.3 nW Pr−thresh=6.3nW的来源
定义如下条件:
- Thermal Noise floor 为 -99dBm
- receiver noise figure 为 17 dB
- 通信质量要求SNR至少为 30 dB
P r − t h r e s h ≥ 30 + ( − 99 + 17 ) = − 52 d B m = 6.3 n W (1,14) \Large P_{r-t h r e s h}\geq30+(-99+17)=-52\mathrm{~dBm} = 6.3\mathrm{~nW}\tag{1,14} Pr−thresh≥30+(−99+17)=−52 dBm=6.3 nW(1,14)