【LEACH】WSN路由能耗模型基础

本文深入解析了LEACH无线传感器网络路由模型的基础,探讨了经典模型的推导过程,包括自由空间模型和两射线地面传播模型。介绍了εfs和εamp的来源,并通过实验条件计算出其具体值。此外,还强调了模型中的固定参数如传输速率和接收信号功率的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【LEACH】WSN路由模型基础

如今论文界有关WSN/IoT路由协议能耗计算的模型,基本都是沿用LEACH作者在20年前提出的。

鄙人认为,如果你想以发论文为目的深耕这个领域,还是非常有必要将这个底层模型的来龙去脉搞清楚的。

如果你理解了这个模型的本质,甚至可以从模型推导中建立与别的通信概念比如无人机、IRS、CB等的统一能耗模型。

请注意,模型只是对现实世界的一种数学刻画,所以模型本身有瑕疵是很正常的,不必钻牛角尖。

1、经典WSN能耗模型

将下面这个模型称为**”经典模型“**,接下来几个小节将逐步推导出这个经典模型:
E T ( b , d ) = { b ⋅ E e l e c + b ⋅ ε f s ⋅ d 2 , d < d c r o s s o v e r b ⋅ E e l e c + b ⋅ ε a m p ⋅ d 4 , d ≥ d c r o s s o v e r , (1) \Large E_{T}(b,d)=\left\{\begin{array}{l l}{{b\cdot E_{e l e c}+b\cdot\varepsilon_{f s}\cdot d^{2},\quad d<d_{crossover}}}\\ {{b\cdot E_{e l e c}+b\cdot\varepsilon_{a m p}\cdot d^{4},\quad d\geq d_{crossover},}}\end{array}\right.\tag{1} ET(b,d)= bEelec+bεfsd2,d<dcrossoverbEelec+bεampd4,ddcrossover,(1)
在这里插入图片描述

参考文献:

[1] Application-Specific Protocol Architectures for Wireless Networks

URL链接:Application-specific protocol architectures for wireless networks (mit.edu)

[2] An application-specific protocol architecture for wireless microsensor networks

URL链接:An application-specific protocol architecture for wireless microsensor networks | IEEE Journals & Magazine | IEEE Xplore

2、基本模型

Channel Propagation Model

  • 当距离d小于特定数值时,使用自由空间模型(Friss free space model - d 2 d^2 d2 attenuation)
  • 当距离d大于特定数值时,使用两射线地面传播模型进行衰减(Two-ray ground propagation model - d 4 d^4 d4attenuation)

“特定数值” :交叉点定义为: d crossover  = 4 π L h r h t λ \Large d_{\text {crossover }}=\frac{4 \pi \sqrt{L} h_{r} h_{t}}{\lambda} dcrossover =λ4πL hrht

  • L ≥ 1 \Large L \geq 1 L1与传播无关的系统损耗因子。

  • h r h_r hr h t h_t ht是接收天线和发射天线的地面高度

  • λ \lambda λ是载波波长

自由空间模型 && two-ray ground propagation 模型
P r ( d ) = { P t G t G r λ 2 ( 4 π d ) 2 L , d < d c r o s s o v e r P t G t G r h t 2 h r 2 d 4 , d ≥ d c r o s s o v e r , (1,1) \Large P_r(d)=\left\{\begin{array}{l l}{{\frac{P_tG_tG_r\lambda^2}{(4 \pi d)^2L},\quad d<d_{crossover}}}\\ {{\frac{P_tG_tG_rh_t^2h_r^2}{d^4},\quad d\geq d_{crossover},}}\end{array}\right. \tag{1,1} Pr(d)= (4πd)2LPtGtGrλ2,d<dcrossoverd4PtGtGrht2hr2,ddcrossover,(1,1)

3、 ε f s ⋅ ε a m p \varepsilon_{f s}\cdot\varepsilon_{a m p} εfsεamp来源

我们将发送方的能耗定义为如下两个部分:电路能耗 + 放大器能耗(通信能耗)
E T ( b , d ) = E T x − e l e c ( b ) + E T x ( b , d ) (1,2) \Large E_{T}(b, d)=E_{T x-e l e c}(b)+E_{T x}(b, d) \tag{1,2} ET(b,d)=ETxelec(b)+ETx(b,d)(1,2)
此时我们假定一个固定的传输速率 R b \Large R_b Rb,那么发射功率 P t \Large P_t Pt可以定义为:每比特传输能量 × 比特率,即:
P t = E T x ( 1 , d ) R b (1,3) \Large P_{t}=E_{Tx}\left(1,d\right)R_{b}\tag{1,3} Pt=ETx(1,d)Rb(1,3)
在自由空间模型中,我们知道信号呈 d 2 \Large d^2 d2衰减,每比特传输能量可以定义为:(引入一个常数 ε f s \Large \varepsilon_{f s} εfs)
E T x ( 1 , d ) = ε f s d 2 (1,4) \Large E_{Tx}\left(1,d\right) = \varepsilon_{f s}d^2\tag{1,4} ETx(1,d)=εfsd2(1,4)
所以发射功率 P t \Large P_t Pt可以进一步展开为:
P t = ε f s R b d 2 (1,5) \Large P_{t}=\varepsilon_{f s}R_{b}d^2\tag{1,5} Pt=εfsRbd2(1,5)
同理,在Two-ray ground propagation模型中,信号呈 d 4 \Large d^4 d4衰减,每比特传输能量可以定义为:(引入一个常数 ε a m p \Large \varepsilon_{amp} εamp)
E T x ( 1 , d ) = ε a m p d 4 (1,6) \Large E_{Tx}\left(1,d\right) = \varepsilon_{amp}d^4\tag{1,6} ETx(1,d)=εampd4(1,6)
所以发射功率 P t \Large P_t Pt可以进一步展开为:
P t = ε a m p R b d 4 (1,7) \Large P_{t}=\varepsilon_{amp}R_{b}d^4\tag{1,7} Pt=εampRbd4(1,7)

总结上述关于发射功率 P t \Large P_t Pt的推导,可得如下表达式:
P t = { ε f s R b d 2 , d < d c r o s s o v e r ε a m p R b d 4 , d ≥ d c r o s s o v e r (1,8) \Large P_{t}=\left\{\begin{array}{c c c}{{\varepsilon_{fs}R_{b}d^{2}}}&{{,}}&{{d<d_{c r o s s o v e r}}}\\ {{\varepsilon_{amp}R_{b}d^{4}}}&{{,}}&{{d\geq d_{c r o s s o v e r}}}\end{array}\right.\tag{1,8} Pt= εfsRbd2εampRbd4,,d<dcrossoverddcrossover(1,8)

此时我们进一步定义一个最小接收信号功率 P r − t h r e s h = 6.3 n W \Large P_{r-thresh} = 6.3 nW Prthresh=6.3nW来保证通信的质量,我们联立**(1, 8)以及(1, 1)**

即可得到计算式:

ε f s = P r − t h r e s h ( 4 π ) 2 R b G t G r λ 2 (1,9) \Large \varepsilon_{fs}=\frac{P_{r-t h r e s h}(4\pi)^{2}}{R_{b}G_{t}G_{r}\lambda^{2}} \tag{1,9} εfs=RbGtGrλ2Prthresh(4π)2(1,9)

ε a m p = P r − t h r e s h R b G t G r h t 2 h r 2 (1,10) \Large \varepsilon_{a m p}=\frac{P_{r-t h r e s h}}{R_{b}G_{t}G_{r}h_{t}^{2}h_{r}^{2}}\tag{1,10} εamp=RbGtGrht2hr2Prthresh(1,10)

重点来了,这时模型的作者直接假定实验条件:
在这里插入图片描述

也就是说,这个模型**内部隐藏条件(约定)**如下:

  • G t = G r = 1 G_t = G_r = 1 Gt=Gr=1
  • h t = h r = 1.5 m h_t = h_r = 1.5m ht=hr=1.5m
  • λ = 0.328 m \lambda = 0.328m λ=0.328m
  • R b = 1  Mbps R_b = 1\ \text{Mbps} Rb=1 Mbps

带入这些条件(约定),即可求得:
ε f s = 10   pJ/bit/m 2 (1,11) \Large \varepsilon_{fs}=10 \ \text{pJ/bit/m}^2 \tag{1,11} εfs=10 pJ/bit/m2(1,11)

ε a m p = 0.0013   pJ/bit/m 4 (1,12) \Large \varepsilon_{a m p}=0.0013 \ \text{pJ/bit/m}^4 \tag{1,12} εamp=0.0013 pJ/bit/m4(1,12)

最后,我们将(1, 11)(1, 12)分别带入(1, 4) (1, 6),再根据 E T x ( b , d ) = b ∗ E T x ( 1 , d ) E_{T x}(b, d) = b * E_{Tx}\left(1,d\right) ETx(b,d)=bETx(1,d)带回公式(1,2),即可推出**”经典模型“**的表达式。

4、个人结论

关于这个黑盒”经典模型“:

  • 模型内部约定了传输速率 R b = 1  Mbps R_b = 1\ \text{Mbps} Rb=1 Mbps等参数
  • 模型的长距离能耗模型由Two-Ray Model 推导而来
  • 模型约定了通信过程中,接收端的信号功率为 P r − t h r e s h = 6.3 n W P_{r-thresh} = 6.3 nW Prthresh=6.3nW,同时可以反推发送信号功率 P t P_t Pt
    • 模型内部的接收端的信号功率可以视为定值。
    • 发送信号功率为变值(由距离决定)。

5、其他细节

5.1、电路损耗常数 E e l e c E_{elec} Eelec的计算方法:(根据硬件测量得来)

E e l e c = Total Energy Consumed Size of Data Packet (1,13) \Large E_{elec} = \frac{{\text{Total Energy Consumed}}}{{\text{Size of Data Packet}}}\tag{1,13} Eelec=Size of Data PacketTotal Energy Consumed(1,13)

5.2、 P r − t h r e s h = 6.3 n W P_{r-thresh} = 6.3 nW Prthresh=6.3nW的来源

定义如下条件:

  • Thermal Noise floor 为 -99dBm
  • receiver noise figure 为 17 dB
  • 通信质量要求SNR至少为 30 dB

P r − t h r e s h ≥ 30 + ( − 99 + 17 ) = − 52   d B m = 6.3   n W (1,14) \Large P_{r-t h r e s h}\geq30+(-99+17)=-52\mathrm{~dBm} = 6.3\mathrm{~nW}\tag{1,14} Prthresh30+(99+17)=52 dBm=6.3 nW(1,14)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nicer0815

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值