目录
定积分是什么呢?
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。通俗来讲就是计算某条曲线一定范围内曲线与x轴的面积,假如你在坐标系上画一条曲线,我们可以使用定积分求出这条曲线与x1到x2围起来的面积。
数学符号表示为
· ∫ 表示积分符号。
· a和 b 是积分的下限和上限,表示积分区间[a,b]。
· f(x)是被积函数,表示在区间 [a,b]上进行积分的函数。
· dx表示积分变量为 x。
怎么求解定积分呢?
求解的步骤一般分为
- 明确积分的上下限(积分区间)和被积函数。
- 找出被积函数的原函数
- 将上下限代入到原函数当中,求差值
困难点一般是在如何找出原函数上面
如何寻找原函数呢?
在定积分中,找出原函数是求解定积分很重要的步骤。原函数是被积函数的一个反导数,即找到一个函数,它的导数等于被积函数。这个过程被称为不定积分。
常用的方法有:
1.基本积分法:记住常用的不定积分公式,直接用公式把原函数转换出来
2.换元法:用一个假设变量简化被积函数,接着再套基本不定积分公式,得出简化后的原函数,假设变量重新替换回去,可以得到未简化的原函数
3.分部积分法:用于处理乘积形式的被积函数,利用分部积分公式∫udv=uv−∫vdu,将被积分函数一点一点积分出来,有时候可能还需要2次以上的分部积分。博主的理解是先将没那么好微分(求导)的部分积分出去,公式套上去后u与v位置互换,我们把好微分的部分微分回来,就得到一个更简单的被积函数了。u是好微分那部分,v是已经被积分出去的另一部分。
在求解复杂积分公式时以上三种方法可能会交叉一起使用,才能推导出原函数。换元法与分部积分法需要用到微分(求导)概念,需先掌握微分概念后才好看明白。
基本积分公式
常数积分
幂函数积分
指数函数积分
对数函数积分
三角函数积分
反三角函数积分
双曲线函数积分
换元法
以题为例,进行步骤讲解
1.选择合适的换元变量:假设一个变量出来,使得被积分函数变得简单些。
设变量。
2.替换微分:因为变量被替换了,微分那块的变量也要替换过去,即把我们原被积函数的dx换成du
用微分(求导)的方法 得,
。现在我们已经找到原积分里面微分的dx等于什么了,将数据带原积分得
3.变换积分上下限:将原积分区间的上下限从x坐标变换到u坐标。
上面步骤已经把不定积分的公式转化出来了,在定积分当中一般还有积分的上限和下限,例如原积分的上限是4,下限是2。将数据带入,得出新的积分上限是16,下限是4
4.简化并计算积分:简化到可以使用基本积分公式计算程度,再使用基本积分公式计算
根据基本积分公式,得出新积分的不定积分公式为
,得出积分答案是
5.还原变量(如果需要):计算结果还原回原来的变量(定积分通常不需要这一步)。
如果需要原积分的不定积分公式,我们就利用新积分的不定公式将给套回去。
得出原积分的不定积分公式为
分部积分法
分部积分法用于处理无法直接积分的乘积函数,例如多项式和指数函数,三角函数,对数函数等函数的乘积,我们通过分部积分公式一步一步的将函数简化。分部积分公式为:
以题为例,需两次分部积分,进行步骤讲解
1.选择u:从被积函数中选择好微分(求导)部分当u。 根据LIATE 法则来确定u,先选最前面的。
LIATE 法则:
- L - 对数函数(Logarithmic functions,例如 ln(x))
- I - 反三角函数(Inverse trigonometric functions,例如 arctan(x))
- A - 代数函数(Algebraic functions,例如 x^n)
- T - 三角函数(Trigonometric functions,例如 sin(x))
- E - 指数函数(Exponential functions,例如 e^x)
根据LIATE 法则 代数函数高于三角函数,我们选择当中u,
2.转化dv:我们把被积分函数剩下的部分通过不定积分塞到d的后面,使得原积分等于∫udv
即把sin(x)塞到d后面,通过不定积分公式
得到原积分等于,这个时候我们也知道v=-cosx
3.计算du:
我们知道u=,通过微分(求导),得
4.套分部积分公式:我们已经知道u,v,du,这个时候套公式就可以得到进一步积分的新公式了
如果是简单的积分现在通过基本不定积分公式或换元法,就可以把 这块的积分求出,我们整个公式的积分结果就出来了。
5.判断是否需要再次分部积分:
我们例题经过一次分部积分后,得出新的被积函数可以划为代数函数和三角函数的乘积。可以再来一次分部积分
将数据带回上一步的公式,得出整个完整的积分公式为
相关知识链接:
微分的dx与积分的dx有什么区别?
https://blog.csdn.net/qq_45598353/article/details/139548977?spm=1001.2014.3001.5501