模拟电路(电子线路(线性部分)):常用半导体器件

作者留言:本文尚未完成,针对看过视频的同学临时开放,来看仿真部分的同学们可以直接跳到仿真部分,仿真和理论没有太大的关联,不必都看。

作者留言:全文均由作者根据自身理解一字一字的敲出,由于作者自身写作能力有限或每人的理解不同,可能有些问题大家看不明白,欢迎大家留言或私信,我会根据大家反应的情况及时调整文中内容,谢谢大家!

目录

目录

半导体物理基础知识 

本征半导体

杂质半导体

多子和少子的热平衡浓度

两种导电机理——漂移和扩散

PN结

动态平衡下的PN结:

PN结的伏安特性:               ​

PN结的击穿特性:

PN结的电容特性:

PN结的温度特性:

二极管

二极管电路分析参数:

二极管的等效电路:(待补图)

二极管的种类:(待补)

二极管的应用:

三极管(双极型晶体管)

三极管原理:

三极管的种类:

三极管应用:

三极管等效电路:(待补)

三极管电路分析:

场效应管(单极型晶体管)

场效应管原理:

场效应管参数:

场效应管四种类型:

场效应管等效电路:

场效应管应用:

集成电路中的元件

计算机辅助理论构建实操

Matlab软件

二极管:

保护功能

防反向电压

防过压

整流功能

稳压功能

限幅功能

钳位功能

逻辑门功能

三极管:

信号放大:

共发射极:

共集电极:

共基极:


半导体物理基础知识 

二极管是一种由PN结组成的电子器件,接P型半导体的线称为正极(阳极,A),接N型半导体 的线称为负极(阴极,K)

PN结是由P型半导体与N型半导体结合而成的。两种半导体都是杂质半导体,即在本征半导体中掺入少量特定的元素结合而成。

二极管的主要特性是单项导电性:外加正向电压,二极管导通,流经电流很大。外加反向电压,二极管截至,流经电流很小。该特性可以用万用表测得,同时还能判断哪边是正极,哪边是负极。

半导体是导电能力介于导体和绝缘体之间的物质:它的电阻率在(10^{-3}~10^9)Ω.cm范围内。用来制作半导体器件主要是硅(Si),砷化镓(GaAs),锗(Ge)。其中硅用得最广泛,是当前集成电路主要的材料。砷化镓主要用来制作高速半导体器件。

本征半导体

本征半导体:一块物质,都是同一种物质,内部晶格排列完全一致,每个原子均和相邻的构成4个共价键,没有少电子,也没有多电子,局部还是全局都不显电性。硅和锗的单晶就是这样。(抽象点讲,这种物质的原子结构,惯性核显4正电,外层带4个电子,才有机会形成)

本征激发和复合:一块本征半导体,在0 K温度(绝对零度)和没有外界影响下,它的外层电子都被死死的束缚在共价间中,电子是跑不出去的。当温度升高或受光照,一部分外层电子获取足够能量就会跑出去,成为了自由运动的电子,同时共价键中留下数量相同的空位(称为空穴),这就是本征激发

自由电子跑着跑着,也可能会遇到别的电子跑出留下的空穴,释放能量,造成自由电子-空穴成对消失的过程称为复合

热平衡载流子浓度:当温度一定时,本征激发和复合会维持在一个动态平衡的状态,即跑出去的电子和跑回来电子数量一致,这个时候就达到了热平衡这种情况下我们可以通过公式去计算空穴或者自由电子的浓度值  

n_i = 自由电子浓度或者空穴浓度

A = 常数(硅3.88*10^{16}cm^{-3}K^{-3/2},锗1.76*10^{16}cm^{-3}K^{-3/2}

T = 开尔文温度。单位(K)。绝对零度为0 K

e = 自然常数(2.71828)

k = 玻耳兹曼常数(8.63*10^{-5}eV/K,或1.38*10^{-23}J/K)(eV为电子伏特,J为焦耳)

-E_{g0} = 温度为绝对零度(0K)时的禁带宽度。硅为1.21eV,锗为0.785eV。

根据这条公式,我们可以解决以下几种应用问题

1.知道本征半导是什么材料做的,就可知在任何恒定温度条件下:它单个载流子浓度值是n_i多少(空穴或者自由电子).

杂质半导体

在本征半导体中,掺入一定量的杂质元素,可以使得空穴或自由电子极大的增多,从而极大的提高导电能力,这种半导体称为杂质半导体掺入5价元素(如磷,锑,砷),自由电子增多,称为N型半导体或电子型半导体。掺入3价元素的杂质(如硼,镓,铝),空穴增多,称为P型半导体或空穴型半导体。

N型半导体:五价元素有5个价电子 ,当它少量掺入到只有4个价电子的本征半导体当中时,5价元素与上下左右的4价元素两两形成共价键,会发现还剩1个电子不受共价键的约束,在室温条件下,这个电子足以获得足够的能量让它跑出去,导致了自由电子的增多,又因为不是共价键中跑出去的,不会产生新的空穴。带正电原子核又不会移动(无法起到载流子的导电作用)。自由电子的增多,使复合现象几率增大,反而又导致空穴的减少这个东西我们称为N型半导体,它的多数载流子(多子)是自由电子,少数载流子(少子)是空穴,5价元素称为施主杂质。

P型半导体:与上面同理,掺入3价元素,形成共价健时多了一个空位(空穴),多出来的空穴并不会产生自由电子空穴多了也会使复合现象几率增大,使得自由电子减少吃了一个额外电子的3价元素显负电,但是它不会跑无法导电。那么这个东西我们称为P型半导体,它的多数载流子(多子)是空穴,少数载流子(少子)是自由电子,3价元素称为受主杂质。

多子和少子的热平衡浓度

        接下的内容是为了计算掺杂半导体的多子和少子的浓度分别是多少?

想计算要满足两个条件,一个条件是处于热平衡状态,另一个条件是处于电中性状态。

热平衡状态:当温度一定时,复合现象和激发现象维持动态平衡,那么多子和少子的数量也会动态稳定下来。处于这种状态时,它们有一个关系式:参杂半导体的两种载流子的热平衡浓度乘积恒等于它的本征半导体载流子浓度值的平方。则关系式为:n_0p_0 = n_i^2

n_0:掺杂半导体的自由电子浓度

p_0:掺杂半导体的空穴浓度

n_i :它本征半导体载流子浓度值(自由电子和空穴一样多,这个可以代表空穴也可以代表自由电子)

电中性状态:整个块半导体的正电荷恒等于负电荷,对外不显电性。常温状态下,掺杂的原子又全部电离。处于这种状态时,它们又有一个关系式:多子等于掺入的杂质加少子。原因是我们掺入的杂质只会产生多子,而因激发现象产生的少子又同时会产生多子。

P型半导体:掺入受主杂质,空穴为多子,电子为少子。

                    关系式:       p_0=N_a+n_0  

                    p_0:空穴(当前是多子)

                    N_a:  受主杂质(电离产生空穴)

                    n_0:   自由电子(激发现象产生,同时产生空穴)

如果掺入杂质的浓度远远大于其本征半导体热平衡时单个载流子浓度时。少子对多子浓度的影响可以忽略不计算。   即:    N_a>>n_i  时,p_0 \approx N_a

N型半导体:掺入施主杂质,电子为多子,空穴为少子

                     关系式:n_a = N_d + p_0

                     n_0:    自由电子(当前是多子)   

                    N_d:   施主杂质(电离产生 自由电子)

                    p_0:  空穴(激发现象产生,同时产生自由电子)

与上面同理,当:N_d >> n_i时,n_a\approx N_d

根据上面两条关系公式,我们可以解决以下几种应用问题。

1.已知本征半导体单个载流子浓度值,掺杂的元素是什么,掺杂浓度是多少。

    就可知:当前温度下掺杂半导体的自由电子和空穴的浓度值是多少。

如果掺杂元素浓度远大于本征半导体单个载流子浓度,只需要这条公式n_0p_0 = n_i^2

否则需要联立上述两条公式。

两种导电机理——漂移和扩散

半导体的两种载流子(空穴和自由电子),都会随着电场和浓度差形成两股电流(漂移电流和扩散电流)。

漂移运动和漂移电流:载流子在电场的作用下定向运动称为漂移运动,这种情况下,载流子移动                                        产生的电流称为漂移电流

在半导体当中,空穴和自由电子都是载流子,产生的漂移电流都是顺着场强的方向指向低电势方。但自由电子是从低电势运动到高电势,空穴相反。

空穴产生的漂移电流计算公式:       J_{pt}=qp\mu _pE

自由电子产生的漂移电流计算公式:J_{nt}=-(-q)n\mu _nE

总漂移电流计算公式:                      J_t =J_{pt}+J_{nt}=q(p\mu _p+n\mu_n)E

J_{pt}:空穴产生的漂移电流

J_{nt}:自由电子产生的漂移电流

J_t:所有载流子产生的漂移电流

q:单个正电荷电量   (1.6\times10^{-19}C(库伦))

p:空穴浓度

n:自由电子浓度

\mu _p:空穴的迁移率         (不同的温度,材料,掺杂比。数值都会不一样,得看实际情况)

\mu _n:自由电子的迁移率 (不同的温度,材料,掺杂比。数值都会不一样,得看实际情况)

E:外加电场强度(场强) (V/cm)

迁移率:单位场强下的平均漂移速度,单位:cm^2/(V\cdot s)

上述公式如果加入欧姆定律进行推演,会得出电阻率和电导率的计算公式

电阻率计算公式:1/q(p\mu _p+n\mu _n)

电导率计算公式:    q(p\mu _p+n\mu _n)

推演过程:

我认为两个公式的意义是,不需要给导体施加恒定的电压再测电流才能得出电阻了(欧姆定律),我们可以直接从材料,温度,掺杂比等微观层面直接理论计算出电阻率和电导率,我们只要可控这些条件,就可以生产出任意材料的任意电阻率(或电导率)的产品了

扩散与扩散电流:载流子在浓度差的作用下产生的定向运动称为扩散运动,这种情况下,载流子                                 移动产生的电流称为扩散电流

只有半导体才存在扩散电流,当半导体中的 载流子存在浓度差时,因为空穴和自由电子电荷是相反的存在,导致的整块导体的每一个地方的电荷是平衡的,内部是不会产生电场去拉动载流子的。

如果是导体,载流子有浓度差,电荷就会不平衡,内部就会产生电场拉动载流子,产生漂移电流。

空穴或自由电子的浓度梯度越大,导致扩散电流密度越大,导致扩散电流越大。

浓度梯度:设自由电子或空穴在一条直线上数量分布各不同,有一个函数n(x)p(x)可以反应它们的分布情况,如果对函数进行微分我们就可以得到载流子的瞬时变化函数\frac{dn(x)}{dx}\frac{dp(x)}{dx}。这个对于载流子在导体的一条直线中的某一点的瞬时变化称为浓度梯度

扩散电流密度:导体横截面中的一点的电流,它乘以面积就是扩散电流了。因载流子有2种,所以有两条计算公式。

                                                      J_n=-qD_n\frac{dn(x)}{dx}

J_n:自由电子的扩散电流密度

-q:单个自由电子电荷量

D_n:自由电子扩散系数   随着温度升高而增大  硅材室温下为34cm^2/s   

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值