【AI-42】如何调整参数和超参

在机器学习和深度学习中,参数和超参数是两个重要概念,以下是一些常见的参数和超参数及其作用:

参数

  • 权重(Weight)
    • 解释:可以将权重想象成连接不同神经元之间的“桥梁”,其大小决定了一个神经元的输出对下一个神经元的影响程度。权重越大,说明前一个神经元对后一个神经元的影响就越大;权重越小,影响就越小。
    • 作用:在模型训练过程中,权重不断调整,使得模型能够学习到输入数据中的各种特征和模式,从而实现对数据的准确拟合和预测。例如在图像识别中,不同的权重可以让模型识别出图像中不同的特征,如边缘、颜色等,进而判断图像是猫还是狗。
  • 偏置(Bias)
    • 解释:偏置就像是给神经元输出添加的一个“基础值”。即使输入为0,偏置也能让神经元有一定的输出,它可以帮助神经元更好地适应数据的分布。
    • 作用:偏置可以调整神经元的激活状态,使模型能够更好地处理各种数据情况。比如在一个线性回归模型中,偏置可以让直线不一定要经过原点,从而更好地拟合数据。

超参数

  • 学习率(Learning Rate)
    • 解释:学习率决定了模型在训练过程中更新参数的速度。如果把模型训练比作爬山找山顶(最优解)的过程,学习率就是每一步迈出的大小。
    • 作用:学习率过大,可能会导致模型在训练过程中错过最优解,甚至无法收敛;学习率过小,模型训练速度会非常慢,需要很长时间才能找到最优解。
  • 隐藏层神经元数量
    • 解释:隐藏层神经元数量决定了模型的复杂度和学习能力。可以把它想象成模型内部用来处理信息的“小房间”数量,每个“小房间”都可以对输入信息进行一定的处理。
    • 作用:神经元数量越多,模型能够学习到的特征和模式就越复杂,拟合能力就越强,但同时也可能导致过拟合,即模型对训练数据过度适应,在新数据上表现不佳;神经元数量过少,模型可能无法学习到足够的特征,导致欠拟合,无法准确拟合数据。
  • 批量大小(Batch Size)
    • 解释:批量大小就是每次训练时同时处理的数据样本数量。可以理解为一次给模型“喂”多少个数据让它一起学习。
    • 作用:较大的批量大小可以利用更多的数据信息来更新参数,提高训练效率,同时可能使训练过程更加稳定,但会占用更多的内存资源;较小的批量大小可以更频繁地更新参数,可能有助于模型跳出局部最优解,但训练速度可能会变慢,而且训练过程可能会更加不稳定。
  • 正则化系数
    • 解释:正则化系数用于控制模型的复杂度,防止过拟合。就好像给模型带上了一个“紧箍咒”,限制它不要过度学习训练数据中的噪声和细节。
    • 作用:正则化系数越大,对模型复杂度的限制就越强,模型就越倾向于简单化,从而减少过拟合的风险,但可能会导致模型的拟合能力下降;正则化系数越小,模型可能会过度拟合训练数据,在新数据上的泛化能力可能会变差。
  • 迭代次数(Epoch)
    • 解释:迭代次数表示模型对整个训练数据集进行学习的轮数。可以理解为模型把所有数据从头到尾学习了多少遍。
    • 作用:迭代次数过少,模型可能没有充分学习到数据中的特征和规律,导致模型性能不佳;迭代次数过多,可能会导致模型过拟合,并且会增加训练时间和计算资源的消耗。

如何理解调整的过程?

  1. 调整参数
  • 理解方式:可以把模型想象成一个学生,参数就是这个学生大脑里用来记住知识的各种 “小格子” 里的内容。在医疗领域,微调参数就像是让这个学生专门去学习医疗方面的知识,比如各种疾病的症状、药物的作用等,把这些知识装到 “小格子” 里。这样学生在面对医疗文本、影像这些具体的医疗数据时,就能根据学到的这些知识来进行疾病预测、药物推荐等操作,就好像学生能根据记住的知识来答题一样。
  • 实际操作:在训练模型时,模型会根据输入的医疗数据,通过算法去自动改变这些 “小格子” 里的内容,也就是调整参数,让模型能越来越准确地处理医疗任务。比如模型在看了很多张肺部 X 光影像和对应的疾病诊断结果后,会自动调整参数,让自己能从影像中看出更多与疾病相关的特征,从而更准确地判断疾病。
  1. 调整超参数
  • 理解方式:超参数可以看作是指导这个学生学习的一些规则或者方法。不同领域的数据就像不同的学习环境,需要用不同的学习方法。在电商领域,数据量很大还很多噪声,就好比学生要在一个很吵闹、有很多干扰的环境里学习大量的东西。这时候,我们就需要调整一些学习规则,比如让学生一次学习更多的内容(增大 batch size),这样可以提高学习效率。而对于科研领域比较规范但专业性强的数据,就好比学习的内容很难但很有条理,可能就需要给学生一些额外的提醒,让他不要学偏了(增加正则化强度),也就是防止模型过拟合。
  • 实际操作:超参数不是模型自己能直接从数据中学到的,而是我们根据数据的特点和模型的表现来手动设置的。比如在处理电商数据时,我们发现模型训练得很慢,就可以尝试把一次处理的数据量(batch size)调大一些;如果发现模型对一些噪声数据过度关注了,就增加正则化强度,让模型不要太在意那些可能不太重要的干扰信息,从而让模型更好地学习到数据中的有用规律。

什么时候需要调整?

在机器学习和深度学习中,参数和超参数的调整场景有所不同:

调整参数的情况

  • 模型训练阶段:参数指的是模型内部可以学习的变量,像神经网络中的权重(weight)和偏置(bias)。在训练过程中,为了让模型能够拟合训练数据,需要通过反向传播算法来计算损失函数对参数的梯度,进而沿着梯度反方向调整参数值,使损失函数不断减小。例如,在训练一个图像分类的神经网络时,随着训练数据不断输入,参数会持续更新,让模型逐渐学会区分不同类别的图像特征。
  • 数据分布变化:当新的数据流入,且新数据的分布与原训练数据有一定差异,但差异不是特别大时,模型可以通过微调参数来适应新数据。比如一个原本用于识别手写数字的模型,在加入少量风格略有不同的新手写数字样本后,通过对参数的微调,仍能保持较好的识别效果。

调整超参数的情况

  • 模型性能未达预期:如果模型在训练集上表现很好,但在验证集或测试集上准确率低、误差大,出现过拟合现象,可能需要调整超参数。比如减少神经网络隐藏层神经元数量,降低模型复杂度;增大正则化系数,对参数进行约束。反之,若模型在训练集上就表现差,出现欠拟合,可增加隐藏层神经元数量、加大学习率等,让模型有更强的学习能力。
  • 不同的任务和数据集:不同类型的任务(如文本分类、语音识别、图像生成等)和数据集(规模大小、数据特征分布等不同)适用的模型超参数不同。例如,处理大规模图像数据集的卷积神经网络,其学习率、层数、每层的神经元数量等超参数,与处理小规模文本数据的循环神经网络的超参数设置往往不一样,需要根据具体情况重新调整。
  • 训练过程异常:若训练过程中损失函数不收敛,一直震荡或者下降非常缓慢,可能是学习率设置不合理。此时,需要调整学习率,比如降低学习率来使训练过程更稳定地收敛;若训练速度过快,导致错过最优解,也可以适当减小学习率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值