1.设
X
,
Y
X,Y
X,Y都是非负的连续型随机变量,它们相互独立,则有
P
{
X
<
Y
}
=
∫
0
∞
F
X
(
x
)
f
Y
(
x
)
d
x
P\{X<Y\}=\int_{0}^{\infty}F_{X}(x)f_{Y}(x)dx
P{X<Y}=∫0∞FX(x)fY(x)dx
其中
F
X
(
x
)
F_{X}(x)
FX(x)是
X
X
X的分布函数,
f
Y
(
y
)
f_{Y}(y)
fY(y)是
Y
Y
Y的概率密度.
2.设
X
,
Y
X,Y
X,Y是相互独立的随机变量,它们都服从正态分布
N
(
0
,
σ
2
)
.
N(0,\sigma^2).
N(0,σ2).随机变量
Z
=
x
2
+
y
2
Z=\sqrt{x^2+y^2}
Z=x2+y2的概率密度为
f
Z
(
z
)
=
{
z
σ
2
e
−
z
2
2
σ
2
,
z
≥
0
,
0
,
其
他
f_{Z}(z)=\left\{\begin{aligned} &\frac{z}{\sigma^2}e^{-\frac{z^2}{2\sigma^2}},z \ge 0,\\ &0,其他\\ \end{aligned}\right.
fZ(z)=⎩⎨⎧σ2ze−2σ2z2,z≥0,0,其他
称
Z
Z
Z服从参数为
σ
(
σ
>
0
)
\sigma(\sigma>0)
σ(σ>0)的瑞利分布.
3.设随机变量
X
,
Y
X,Y
X,Y相互独立,且服从同一分布,则有
P
{
a
<
m
i
n
{
X
,
Y
}
≤
b
}
=
[
P
{
X
>
a
}
]
2
−
[
P
{
X
>
b
}
]
2
(
a
≤
b
)
.
P\{a<min\{X,Y\} \leq b\}=[P\{X>a\}]^2-[P\{X>b\}]^2(a \leq b).
P{a<min{X,Y}≤b}=[P{X>a}]2−[P{X>b}]2(a≤b).
4.设
X
,
Y
X,Y
X,Y是相互独立的随机变量,其分布律分别为
P
{
X
=
k
}
=
p
(
k
)
,
k
=
0
,
1
,
2
,
…
,
P
{
Y
=
r
}
=
q
(
r
)
,
r
=
0
,
1
,
2
,
…
.
P\{X=k\}=p(k),k=0,1,2,\dots,\\ P\{Y=r\}=q(r),r=0,1,2,\dots.
P{X=k}=p(k),k=0,1,2,…,P{Y=r}=q(r),r=0,1,2,….
则有
Z
=
X
+
Y
Z=X+Y
Z=X+Y的分布律为
P
{
Z
=
i
}
=
∑
k
=
0
i
p
(
k
)
q
(
i
−
k
)
,
i
=
0
,
1
,
2
,
…
.
P\{Z=i\}=\sum_{k=0}^{i}p(k)q(i-k),i=0,1,2,\dots.
P{Z=i}=k=0∑ip(k)q(i−k),i=0,1,2,….
5.设
X
,
Y
X,Y
X,Y是相互独立的随机变量,
X
∼
π
(
λ
1
)
,
Y
∼
π
(
λ
2
)
,
X\sim \pi(\lambda_1),Y\sim \pi(\lambda_2),
X∼π(λ1),Y∼π(λ2),则有
Z
=
X
+
Y
∼
π
(
λ
1
+
λ
2
)
Z=X+Y\sim \pi(\lambda_1+\lambda_2)
Z=X+Y∼π(λ1+λ2)
6.设
X
,
Y
X,Y
X,Y是相互独立的随机变量,
X
∼
b
(
n
1
,
p
)
,
Y
∼
b
(
n
2
,
p
)
,
X\sim b(n_1,p),Y\sim b(n_2,p),
X∼b(n1,p),Y∼b(n2,p),则有
Z
=
X
+
Y
∼
b
(
n
1
+
n
2
,
p
)
Z=X+Y\sim b(n_1+n_2,p)
Z=X+Y∼b(n1+n2,p)
第三章习题中的一些结论
最新推荐文章于 2024-07-06 10:06:12 发布