第三章习题中的一些结论

1.设 X , Y X,Y X,Y都是非负的连续型随机变量,它们相互独立,则有
P { X < Y } = ∫ 0 ∞ F X ( x ) f Y ( x ) d x P\{X<Y\}=\int_{0}^{\infty}F_{X}(x)f_{Y}(x)dx P{X<Y}=0FX(x)fY(x)dx
其中 F X ( x ) F_{X}(x) FX(x) X X X的分布函数, f Y ( y ) f_{Y}(y) fY(y) Y Y Y的概率密度.
2.设 X , Y X,Y X,Y是相互独立的随机变量,它们都服从正态分布 N ( 0 , σ 2 ) . N(0,\sigma^2). N(0,σ2).随机变量 Z = x 2 + y 2 Z=\sqrt{x^2+y^2} Z=x2+y2 的概率密度为
f Z ( z ) = { z σ 2 e − z 2 2 σ 2 , z ≥ 0 , 0 , 其 他 f_{Z}(z)=\left\{\begin{aligned} &\frac{z}{\sigma^2}e^{-\frac{z^2}{2\sigma^2}},z \ge 0,\\ &0,其他\\ \end{aligned}\right. fZ(z)=σ2ze2σ2z2,z0,0,
Z Z Z服从参数为 σ ( σ > 0 ) \sigma(\sigma>0) σ(σ>0)的瑞利分布.
3.设随机变量 X , Y X,Y X,Y相互独立,且服从同一分布,则有
P { a < m i n { X , Y } ≤ b } = [ P { X > a } ] 2 − [ P { X > b } ] 2 ( a ≤ b ) . P\{a<min\{X,Y\} \leq b\}=[P\{X>a\}]^2-[P\{X>b\}]^2(a \leq b). P{a<min{X,Y}b}=[P{X>a}]2[P{X>b}]2(ab).
4.设 X , Y X,Y X,Y是相互独立的随机变量,其分布律分别为
P { X = k } = p ( k ) , k = 0 , 1 , 2 , … , P { Y = r } = q ( r ) , r = 0 , 1 , 2 , …   . P\{X=k\}=p(k),k=0,1,2,\dots,\\ P\{Y=r\}=q(r),r=0,1,2,\dots. P{X=k}=p(k),k=0,1,2,,P{Y=r}=q(r),r=0,1,2,.
则有 Z = X + Y Z=X+Y Z=X+Y的分布律为
P { Z = i } = ∑ k = 0 i p ( k ) q ( i − k ) , i = 0 , 1 , 2 , …   . P\{Z=i\}=\sum_{k=0}^{i}p(k)q(i-k),i=0,1,2,\dots. P{Z=i}=k=0ip(k)q(ik),i=0,1,2,.
5.设 X , Y X,Y X,Y是相互独立的随机变量, X ∼ π ( λ 1 ) , Y ∼ π ( λ 2 ) , X\sim \pi(\lambda_1),Y\sim \pi(\lambda_2), Xπ(λ1),Yπ(λ2),则有
Z = X + Y ∼ π ( λ 1 + λ 2 ) Z=X+Y\sim \pi(\lambda_1+\lambda_2) Z=X+Yπ(λ1+λ2)
6.设 X , Y X,Y X,Y是相互独立的随机变量, X ∼ b ( n 1 , p ) , Y ∼ b ( n 2 , p ) , X\sim b(n_1,p),Y\sim b(n_2,p), Xb(n1,p),Yb(n2,p),则有
Z = X + Y ∼ b ( n 1 + n 2 , p ) Z=X+Y\sim b(n_1+n_2,p) Z=X+Yb(n1+n2,p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值