线代打卡12

1.讨论 n n n阶方阵
A = ( a b … b b a … b ⋮ ⋮ ⋮ b b … a ) ( n ≥ 2 ) A=\left(\begin{matrix} a&b&\dots&b \\ b&a&\dots&b \\ \vdots&\vdots& &\vdots \\ b&b&\dots&a \\ \end{matrix}\right)(n\ge 2) A=abbbabbba(n2)
的秩.

解:
A → ( a + ( n − 1 ) b b … b a + ( n − 1 ) b a … b ⋮ ⋮ ⋮ a + ( n − 1 ) b b … a ) → ( a + ( n − 1 ) b b … b a − b … b a − b ) A\to \left(\begin{matrix} a+(n-1)b&b&\dots&b \\ a+(n-1)b&a&\dots&b \\ \vdots&\vdots& &\vdots \\ a+(n-1)b&b&\dots&a \\ \end{matrix}\right)\to \left(\begin{matrix} a+(n-1)b&b&\dots&b \\ &a-b&\dots&b \\ & & & \\ & & &a-b \\ \end{matrix}\right) Aa+(n1)ba+(n1)ba+(n1)bbabbbaa+(n1)bbabbbab
因此
(1)当 a ≠ b a \not=b a=b a + ( n − 1 ) b ≠ 0 a+(n-1)b\not =0 a+(n1)b=0时, r ( A ) = n . r(A)=n. r(A)=n.
(2)当 a = b ≠ 0 a=b\not =0 a=b=0
r ( A ) = 1 ; r(A)=1; r(A)=1;
a = b = 0 a=b=0 a=b=0
r ( A ) = 0. r(A)=0. r(A)=0.
(3)当 a + ( n − 1 ) b = 0 a+(n-1)b=0 a+(n1)b=0 b ≠ 0 b\not =0 b=0时,
r ( A ) = n − 1. r(A)=n-1. r(A)=n1.

2.设 A A A m × n m×n m×n矩阵, B B B n × m n×m n×m矩阵,若 A B = E AB=E AB=E,证明:
r ( B ) = m . r(B)=m. r(B)=m.

证:由秩的定义知
r ( B ) ≤ m r(B)\leq m r(B)m
又有
m = r ( E m ) = r ( A B ) ≤ r ( B ) m=r(E_m)=r(AB)\leq r(B) m=r(Em)=r(AB)r(B)

r ( B ) = m . r(B)=m. r(B)=m.

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值