P2天气识别

一、代码及运行结果

1.导入包及设置GPU或CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

2.导入数据

import os,PIL,random,pathlib

data_dir = 'weather_photos/'
data_dir = pathlib.Path(data_dir)
print(data_dir)

data_paths = list(data_dir.glob('*'))
print(data_paths)
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames

3.数据预处理

total_datadir = 'weather_photos/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
  transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
  transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
  transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
      mean=[0.485, 0.456, 0.406], 
      std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

4.数据预处理

total_datadir = 'weather_photos/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
  transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
  transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
  transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
      mean=[0.485, 0.456, 0.406], 
      std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                         batch_size=batch_size,
                                         shuffle=True,
                                         num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        num_workers=1)

for X, y in test_dl:
  print("Shape of X [N, C, H, W]: ", X.shape)
  print("Shape of y: ", y.shape, y.dtype)
  break

5.搭建网络

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential,ReLU

num_classes = 4

class Model(nn.Module):
  def __init__(self):
      super(Model,self).__init__()
      # 卷积层
      self.layers = Sequential(
          # 第一层
          nn.Conv2d(3, 24, kernel_size=5),
          nn.BatchNorm2d(24),
          nn.ReLU(),
          # 第二层
          nn.Conv2d(24,64 , kernel_size=5),
          nn.BatchNorm2d(64),
          nn.ReLU(),
          nn.MaxPool2d(2,2),
          nn.Conv2d(64, 128, kernel_size=5),
          nn.BatchNorm2d(128),
          nn.ReLU(),
          nn.Conv2d(128, 24, kernel_size=5),
          nn.BatchNorm2d(24),
          nn.ReLU(),
          nn.MaxPool2d(2,2),
          nn.Flatten(),
          nn.Linear(24*50*50, 516,bias=True),
          nn.ReLU(),
          nn.Dropout(0.5),
          nn.Linear(516, 215,bias=True),
          nn.ReLU(),
          nn.Dropout(0.5),
          nn.Linear(215, num_classes,bias=True),
      )

  def forward(self, x):

      x = self.layers(x)
      return x    


device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Model().to(device)

6.模型训练

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-3 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
  size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
  num_batches = len(dataloader)   # 批次数目,1875(60000/32)

  train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
  
  for X, y in dataloader:  # 获取图片及其标签
      X, y = X.to(device), y.to(device)
      
      # 计算预测误差
      pred = model(X)          # 网络输出
      loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
      
      # 反向传播
      optimizer.zero_grad()  # grad属性归零
      loss.backward()        # 反向传播
      optimizer.step()       # 每一步自动更新
      
      # 记录acc与loss
      train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
      train_loss += loss.item()
          
  train_acc  /= size
  train_loss /= num_batches

  return train_acc, train_loss

7.测试模型

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
  size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
  num_batches = len(dataloader)   # 批次数目,1875(60000/32)

  train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
  
  for X, y in dataloader:  # 获取图片及其标签
      X, y = X.to(device), y.to(device)
      
      # 计算预测误差
      pred = model(X)          # 网络输出
      loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
      
      # 反向传播
      optimizer.zero_grad()  # grad属性归零
      loss.backward()        # 反向传播
      optimizer.step()       # 每一步自动更新
      
      # 记录acc与loss
      train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
      train_loss += loss.item()
          
  train_acc  /= size
  train_loss /= num_batches

  return train_acc, train_loss
测试函数

def test (dataloader, model, loss_fn):
  size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
  num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
  test_loss, test_acc = 0, 0
  
  # 当不进行训练时,停止梯度更新,节省计算内存消耗
  with torch.no_grad():
      for imgs, target in dataloader:
          imgs, target = imgs.to(device), target.to(device)
          
          # 计算loss
          target_pred = model(imgs)
          loss        = loss_fn(target_pred, target)
          
          test_loss += loss.item()
          test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

  test_acc  /= size
  test_loss /= num_batches

  return test_acc, test_loss

在这里插入图片描述

8.评估模型

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
预测结果:
在这里插入图片描述

二、总结

本次主要是对于torch.nn.Conv2d()、torch.nn.Linear()、torch.nn.MaxPool2d()以及关于卷积层、池化层的计算进行详细学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值