【IR 论文】HyDE:让 LLM 对 query 做查询改写来改进 Dense Retrieval

论文提出HyDE方法,利用LLM生成伪文档,通过无监督学习的密集编码器进行检索,无需相关性标签。适用于早期搜索系统部署,随着数据积累可进一步优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Precise Zero-Shot Dense Retrieval without Relevance Labels
⭐⭐⭐⭐
CMU, ACL 2023, arXiv:2212.10496
Code: github.com/texttron/hyde

文章目录

论文速读

在以往的 dense retrieval 思路中,需要对 input query 做 encode 来得到 vector,并于 passages 的 vector 做相似度计算实现检索。这里面的 dense encoder 需要把有相关性的 query 和 docs 映射到相近的位置,这就存在两个缺点:

  • dense encoder 需要大量的数据去 learn
  • Hard to generalize when definition of relevance changes

但在现实世界中:

  • 可以用于 train 的具有相关性关联的 data 并不多
  • 检索的需求是多种多样的:
    • 不同的企业或机构有不同的需求
    • 用户的需求也在随着时间发生改变

这就导致了以往的 dense retrieval 的思路并不好用。


本文提出的 HyDE思路如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值