【Text2SQL 论文】CHESS:利用上下文来合成 SQL 的 pipeline

一、论文速读

本文提出了一个 pipeline 框架——CHESS——来解决应用于复杂的真实数据库场景下的 Text2SQL 问题。

在现实场景下,数据库 schema 通常包含不明确的 column name、table name 和混乱的数据,这都对 SQL 转换问题提出了挑战,因此需要一个健壮的检索系统来识别出其中相关的信息。下图展示了一个在做 Text2SQL 时会面临的挑战:

在这里插入图片描述

  • 1)用户问题可能没有确切的数据库值
  • 2)column name 可能不能很好的表示这一列存储了什么数据,因此需要 database catalogs 信息来辅助
  • 3)对于一个 question,有多种 SQL 写法

在以往的研究中,大多将 SQL 生成的上下文限制为 table schema、column 定义和 sample rows,但在生产级数据库中,db catelog、db value 也是重要的辅助信息

本文提出了 CHESS,一个针对现实世界的复杂 DB 的 Text2SQL 系统,它引入了一个 scalable、effective 的 LLM-based 的 pipeline 用于 SQL 生成,主要由三个组件构成:entity and context retrieval、schema selection、SQL generation

### Text2SQL 技术实现 Text2SQL 是一种将自然语言查询转化为 SQL 命令的技术,这使得非技术人员可以使用日常语言与数据库互动而不必掌握复杂的 SQL 语法[^2]。 #### 设计原则 为了使这一转换过程尽可能高效和准确,通常会采用机器学习模型特别是大型语言模型(LLMs),这些模型被训练用来理解人类语言并将之映射到相应的编程指令上。具体来说,在构建一个有效的 Text2SQL 系统时,有几个关键的设计考虑因素: - **意图识别**:解析用户的请求以确定其背后的目的。 - **实体提取**:从句子中找出重要的名词短语作为查询条件中的对象。 - **关系推理**:推断不同实体之间的逻辑关联以便于形成正确的表连接操作。 - **模式匹配**:根据目标数据库的架构调整最终生成的 SQL 语句格式。 #### 实现方法 目前存在多种不同的方式来完成这项任务,其中包括但不限于以下几种方案: 1. DIN-SQL 和 DAIL-SQL 方案依赖于深度神经网络来进行端到端的学习; 2. C3 方法侧重于通过上下文感知机制提高准确性; 3. MAC-SQL 则引入了记忆增强组件帮助处理复杂查询; 4. MCS-SQL 使用多模态数据融合策略提升性能表现; 5. CHESS 结合强化学习优化决策路径的选择效率[^1]。 对于实际应用场景而言,最常用的方法之一就是利用 LangChain 这样的工具包快速搭建起一套完整的解决方案。该框架提供了一种简便的方式来定义如何接收用户提问、调用预训练好的 LLMs 将这些问题转译成合适的 SQL 表达式形式,并且可以直接对接主流的关系型数据库管理系统执行上述得到的结果集返回给前端展示层面上去[^3]。 ```python from langchain import SQLChain, PromptTemplate template = """You are a helpful assistant that translates natural language into SQL queries. {question} """ prompt = PromptTemplate(template=template) sql_chain = SQLChain(prompt=prompt) response = sql_chain.run("What is the average salary of employees?") print(response) ``` 这段 Python 代码展示了怎样借助 `langchain` 库轻松地实现了基本功能——把一句关于员工薪资水平统计需求的话语自动变换成可被执行的有效 SQL 句子。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值