论文:Bridging the Preference Gap between Retrievers and LLMs
⭐⭐⭐
Google Research, arXiv:2401.06954
论文速读
LLM 与 Retriever 之间存在一个 preference gap:大多数 retriever 被设计为 human-friendly,但是 LLM 的偏好与人类的却不一致:
- ranking 方面:由于 LLM 的 self-attention 机制,模型可以集中任何 token 而无视其 position。但人类对于 position 还是很关注的。
- selection 方面:人类可以轻易地忽视掉与上下文无关的信息,但 LLM 却对于无关内容特别敏感。
- repetition 方面:人类往往不关心重复内容,甚至不喜欢重复内容,但是 repetition 却在对于 LLM 在衡量相关性的权重时很有帮助。
论文原文设计了一些实验来证明 preference gap 确实存在,具体可以参考原论文。
为了弥补 LLM 和 Retriever 之间的 preference gap,过去的研究工作往往是集中于对 LLM 或 Retriever 进行微调,但其实无论是 LLM 还是 Retriever 都很可能是无法微调的。
比如对于生产级的 Retriever,如 Googl