关于模型中的R方

1、一元线性回归

R方在一元线性回归模型中,衡量【响应变量X和预测变量Y】的线性关系。

R方=cor(X,Y)^2

但是,在多元线性回归模型中,因为涉及多个预测变量,全部R方就是衡量响应变量和多个预测变量当中的关系。

而有关系数,只是衡量一对变量当中的关系,全部就不可以推广了。

2、多元线性回归模型

R平方=cov(y,yi)^2

这当中有关系数的两个变量变成,响应值和线性回归的预测值了。当然一元线性也同样适用了。

对于R方

一般回归模型

R方是统计学里常用的统计量,在不同任务模型下的解读和用途不一,有时候会出现误用情况。本文总结了对R方的理解和用法,遵循“从一般到特殊”的思路,先讲一般回归模型中的R方,再讲线性回归模型里的R方。"一般"回归模型包括线性模型,随机森林,神经网络等。

  • R方的定义

R方的名字是coefficient of determination,另一个名字是Nash–Sutcliffe model efficiency coefficient。给定一系列真值 yi 和对应的预测值y^i,R方的定义为

在这里插入图片描述

R方的含义是,预测值解释了 yi 变量的方差的多大比例,衡量的是预测值对于真值的拟合好坏程度。通俗理解,假定 yi 的方差为1个单位,则R方表示"使用该模型之后, yi 的残差的方差减少了多少"。比如R方等于0.8,则使用该模型之后残差的方差为原始 yi 值方差的20%。

  • R方=1:最理想情况,所有的预测值等于真值。
  • R方=0:一种可能情况是"简单预测所有y值等于y平均值",即所有 y^i 都等于y¯(即真实y值的平均数),但也有其他可能。
  • R方<0:模型预测能力差,比"简单预测所有y值等于y平均值"的效果还差。这表示可能用了错误模型,或者模型假设不合理。
  • R方的最小值没有下限,因为预测可以任意程度的差。因此,R方的范围是 (−∞,1] 。
  • 注意:R方并不是某个数的平方,因此可以是负值

参考文献:https://zhuanlan.zhihu.com/p/143132259

皮尔逊相关系数中的方差

对于不固定截距的简单线性模型(y = mx + b), R方等于x和y的pearson correlation coefficient的平方。因此,此处的R方范围是[0,1]。R方等于0,表示x和y的散点图完全随机,没有线性关系(或者说,线性相关关系等于0)。R方等于1,表示所有(x,y)散点落在一条直线上。

参考文献:https://zhuanlan.zhihu.com/p/143132259


学习用,如有侵权,请联系删除。

### 结构模型中R的意义和用法 #### R的概念及其重要性 在结构模型(Structural Equation Modeling, SEM)中,R表示内生变量被其前因变量解释的比例。具体来说,它反映了某个特定的观测或潜在变量能够通过其他变量预测的程度[^1]。 对于单个路径系数而言,R平可以衡量该路径对目标节点变异性的贡献;而对于整个模型,则代表所有外显变量共同作用下所解释的目标变量总变异性的一部分。因此,在评价SEM时,较高的R²意味着更好的拟合优度,即模型能较好地再现样本数据之间的关系模式[^3]。 #### 如何获取并解读R值 当利用`lavaan`包进行SEM建模时,可以通过调用`fitMeasures()`函数来提取有关模型适配的信息,其中包括各个指标对应的R值: ```r library(lavaan) # 假设已定义好了一个名为model的sem对象 fit <- sem(model, data=mydata) summary(fit)$rsquare ``` 上述命令会返回一个向量形式的结果列表,其中包含了每个内生变量各自的决定系数——也就是它们各自对应于自变量部分所能解释掉的那一份比例变化情况。通常情况下,如果某项测量得到非常低甚至接近零的小数作为输出结果的话,这可能暗示着当前设定下的因果链条存在不足之处,需要进一步审视和完善理论框架设计或是重新考虑加入更多有意义的影响因素进去加以改进[^2]。 #### 实际应用场景举例说明 考虑到生态学领域内的研究实例,比如探讨植物多样性如何影响土壤微生物群落组成这样一个复杂议题上,科学家们往往会借助SEM去解析其间错综复杂的交互机制。此时,计算出来的各层次上的R就显得尤为重要了:一面可以帮助识别哪些环境特征最显著地塑造了地下生物网络架构;另一面也为后续实验提供了量化依据支持,从而指导人们更加精准有效地开展保护工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Q一件事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值