Pytorch安装(CUDA11.1)

本文档详细介绍了CUDA和PyTorch的安装步骤。首先,通过NVIDIA控制面板或命令行确定CUDA版本,然后从官方网站下载并安装适合的CUDA版本。接着,遵循自定义安装选项,确保仅安装CUDA核心组件。最后,通过PyTorch官网选择适配CUDA版本的库,使用pip安装,并在Python环境中验证安装是否成功。总结中强调了版本匹配和网络超时可能导致的问题。
摘要由CSDN通过智能技术生成

文章目录

  • 前言
  • 一、CUDA安装
  • 二、PyTorch安装
  • 总结


前言

最近安装好了PyTorch,遇到了一些问题,这里简单的整理下流程,帮助大家避免一些配置问题。


一、CUDA安装

 1.CUDA版本选择

方法一:查看NVIDIA控制面板,点击系统信息,查看组件

 可以看到其中第三行为CUDA 11.1.114 driver,因此可以选择CUDA版本为11.1

方法二:win+r,cmd进入命令行,输入nvidia-smi查看显卡信息

可以看到版本为11.1

 2.CUDA下载 

进入官网  CUDA 工具包 | NVIDIA Developer, 选择合适的版本

 或者直接百度CUDA11.1,进入下载即可

3.CUDA安装

点开上一步下载好的,进入安装即可

 点击自定义,继续下一步,只打勾第一个CUDA,并且去掉Visual Studio Integration.

 安装好后在命令行输入nvcc- V,没问题就说明CUDA安装成功。

二、PyTorch安装

1. 进入官网 PyTorch , 选择合适的版本

 

2.CUDA11.1

安装代码如下:

pip --default-timeout=1000 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

使用--default-timeout=1000解决网速过慢导致超时下载失败的可能。

3.验证

进入python交互环境,输入代码

import torch
print(torch.cuda.is_available())

True代表已经配置完成。 


 

总结

需要主要pytorch与CUDA版本之间的关系,如果出现False很有可能是pytorch的版本与CUDA版本不匹配,还需要注意下载过程中可能网速的原因导致超时失败。

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迟步彩云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值