高数基础:Ch2. 序列极限

ch2. 序列极限

1. 序列

序列:两种解释

  1. 实际上是从 N \mathbb N N R \mathbb R R 的一个函数

f : N → R f:\mathbb N \to \mathbb R f:NR

  1. 但是我们也通常把序列看成按照一定顺序排列的数

x 1 = f ( 1 ) , x 1 = f ( 2 ) , … , x n = f ( n ) , … x_1=f(1),x_1=f(2),\dots,x_n=f(n),\dots x1=f(1),x1=f(2),,xn=f(n),

描述方法:

  • 通项
  • 直接描述序列

e.g.
{ 1 n } : 1 , 1 2 , 1 3 , … , 1 n , … 3 , 3.1 , 3.14 , , 3 , 141 , 3 , 1415 , … \{\frac{1}{n}\}:1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n},\dots\\ 3,3.1,3.14,,3,141,3,1415,\dots {n1}:1,21,31,,n1,3,3.1,3.14,,3,141,3,1415,

2. 极限

以下序列:

  • x n = 1 n ( n = 1 , 2 , 3 , …   ) x_n=\frac{1}{n}(n=1,2,3,\dots) xn=n1(n=1,2,3,)
  • x n = ( − 1 ) n n ( n = 1 , 2 , 3 , …   ) x_n=\frac{(-1)^n}{n}(n=1,2,3,\dots) xn=n(1)n(n=1,2,3,)
  • x 2 n = 1 2 n , x 2 n + 1 = 1 2 2 n + 1 , ( n = 1 , 2 , 3 , …   ) x_2n=\frac{1}{2n},x_{2n+1}=\frac{1}{2^{2n+1}},(n=1,2,3,\dots) x2n=2n1,x2n+1=22n+11,(n=1,2,3,)

n n n 在趋于无穷的时候, x n x_n xn可以任意接近一个数 l l l

那么应该如何描述“趋于无穷”和“任意接近”?

极限的定义

使用 ε − N \varepsilon - N εN 语言描述极限

定义(极限):

{ x n } \{x_n\} {xn}是一个序列,如果存在常数 l l l,对于 ∀ ε > 0 \forall \varepsilon >0 ε>0, 都 ∃ N ∈ N \exist N \in \mathbb N NN ,有:
∣ x n − l ∣ < ε ,   ∀ n > N |x_n-l|<\varepsilon ,\ \forall n >N xnl<ε, n>N
则称该序列是 收敛 的,并且 称 l l l 为该序列的极限(或者说序列收敛 于 l l l),记为
lim ⁡ n → ∞ x n = l   或 者   x n → l ( n → ∞ ) \lim_{n\to\infin}x_n = l\ 或者\ x_n\to l(n\to \infin) nlimxn=l  xnl(n)
如果不存在这样的 l l l,那么称 x n x_n xn发散序列

使用 ε − N \varepsilon - N εN 语言描述发散序列

定义(发散序列):

{ x n } \{x_n\} {xn}是一个序列,如果存在常数 l l l,对于 ∀ ε > 0 \forall \varepsilon >0 ε>0, 都 ∃ N ∈ N \exist N \in \mathbb N NN ,有:
∣ x n − l ∣ ≥ ε |x_n-l|\ge\varepsilon xnlε
则称该序列是发散

序列极限的几何意义

改写原定义:
∣ x n − l ∣ < ε ,   ∀ n > N |x_n-l|<\varepsilon ,\ \forall n >N xnl<ε, n>N

为:

x n ∈ U ( l , ε ) = ( l − ε , l + ε ) , ∀ n > N x_n\in U(l,\varepsilon)=(l-\varepsilon,l+\varepsilon),\forall n > N xnU(l,ε)=(lε,l+ε),n>N

则有以下结论:

  • ∀ ε \forall \varepsilon ε,在 l l l ε \varepsilon ε 邻域 U ( l , ε ) U(l,\varepsilon) U(l,ε) 包含了 { x n } \{x_n\} {xn} 自某项之后的所有项(无穷项)
  • ∀ ε \forall \varepsilon ε,在 l l l ε \varepsilon ε 邻域 U ( l , ε ) U(l,\varepsilon) U(l,ε) 之外只有 { x n } \{x_n\} {xn} 的有限项

极限的几个例子

  • 证明 lim ⁡ n → ∞ n n + 1 = 1 \lim_{n\to\infin} \frac{n}{n+1}=1 limnn+1n=1

  • 证明 lim ⁡ n → ∞ q n = 0   ( ∣ q ∣ < 1 ) \lim_{n\to\infin} q^n=0\ (|q|<1) limnqn=0 (q<1)

  • 证明 lim ⁡ n → ∞ n 2 − n + 2 3 n 2 + 2 n + 4 = 1 3 \lim_{n\to\infin} \frac{n^2-n+2}{3n^2+2n+4}=\frac{1}{3} limn3n2+2n+4n2n+2=31

  • 证明 lim ⁡ n → ∞ a n = 1   ( a > 1 ) \lim_{n\to\infin} \sqrt[n]{a}=1\ (a>1) limnna =1 (a>1)

3. 序列极限的性质

  • 唯一性:收敛序列的极限是 唯一的

  • 有界性:收敛序列是 有界的

  • 保序性:

    a n → a , b n → b ( n → ∞ ) a_n\to a,b_n\to b(n\to\infin) ana,bnb(n)

    存在 N 0 N_0 N0使得 a n ≥ b n a_n\ge b_n anbn

    只要 N > N 0 N>N_0 N>N0

    a > b a>b a>b

  • 四则运算:

    a n → a , b n → b ( n → ∞ ) a_n\to a,b_n\to b(n\to \infin) ana,bnb(n),则

  1. lim ⁡ n → ∞ ( a n ± b n ) = a ± b \lim_{n \to \infin} (a_n \pm b_n)=a \pm b limn(an±bn)=a±b
  2. lim ⁡ n → ∞ ( a n b n ) = a b \lim_{n \to \infin} (a_nb_n)=ab limn(anbn)=ab
  3. lim ⁡ n → ∞ a n b n = a b   ( b ≠ 0 , b n ≠ 0 ) \lim_{n \to \infin} \frac{a_n}{b_n}=\frac{a}{b}\ (b\ne 0,b_n\ne 0) limnbnan=ba (b=0,bn=0)
  • 子序列收敛:

a n → a ( n → ∞ ) a_n\to a(n\to \infin) ana(n),则 a n a_n an 的任意一个子序列 a n k → a ( n → ∞ ) a_{n_k}\to a(n\to \infin) anka(n)

  • 单调收敛原理

序列极限的计算(1)

  1. lim ⁡ n → ∞ 3 n 2 + 4 n − 100 4 n 2 + 5 n + 10 \lim_{n\to\infin} \frac{3n^2+4n-100}{4n^2+5n+10} limn4n2+5n+103n2+4n100

  2. lim ⁡ n → ∞ 1 + q + q 2 + ⋯ + q n   ( ∣ q ∣ < 1 ) \lim_{n\to\infin} 1+q+q^2+\dots + q^n\ (|q|<1) limn1+q+q2++qn (q<1)

夹逼收敛原理

设序列

{ x n } { y n } { z n } \{x_n\}\{y_n\}\{z_n\} {xn}{yn}{zn}

满足

x n ≤ y n ≤ z n ,   ∀ n > N 0 x_n\le y_n\le z_n,\ \forall n>N_0 xnynzn, n>N0

x n → a , y n → a   ( n → ∞ ) , 则 z n → a   ( n → ∞ ) x_n\to a,y_n\to a\ (n\to\infin),则z_n\to a\ (n\to\infin) xna,yna (n),zna (n)

序列极限的计算(2)

  1. lim ⁡ n → ∞ n n \lim_{n\to\infin}\sqrt[n]{n} limnnn

  2. lim ⁡ n → ∞ ( a 1 n + a 2 n + ⋯ + a m n ) 1 n )   ( a i > 0 ,   i = 1 , 2 , … , m ) \lim_{n\to\infin}(a_1^n+a_2^n+\dots+a_m^n)^{\frac{1}{n}})\ (a_i>0,\ i=1,2,\dots,m) limn(a1n+a2n++amn)n1) (ai>0, i=1,2,,m)

重要极限

c = lim ⁡ n → ∞ ( 1 + 1 2 + ⋯ + 1 n − ln ⁡ n ) ,   欧 拉 常 数 c = 0.577216 c=\lim_{n\to\infin}(1+\frac{1}{2}+\dots+\frac{1}{n}-\ln n),\ 欧拉常数c=0.577216 c=nlim(1+21++n1lnn), c=0.577216

序列极限的计算(3)

  1. lim ⁡ n → ∞ ( 1 + 1 n ) − 2 n \lim_{n\to\infin}(1+\frac{1}{n})^{-2n} limn(1+n1)2n

  2. lim ⁡ n → ∞ ( 1 − 1 n ) n \lim_{n\to\infin}(1-\frac{1}{n})^{n} limn(1n1)n

  3. lim ⁡ n → ∞ ( 1 − 1 n ) n 2 \lim_{n\to\infin}(1-\frac{1}{n})^{n^2} limn(1n1)n2

  4. lim ⁡ n → ∞ ( 1 − 1 n 2 ) n \lim_{n\to\infin}(1-\frac{1}{n^2})^{n} limn(1n21)n

无穷小量

  • 作为序列极限的一种特例 ,我们引入无穷小量和无穷大量。

  • 定义无穷小量设 { x n } \{x_n\} {xn}是一个序列,若 { x n } → 0 ( n → ∞ ) \{x_n\}\to 0(n\to \infin) {xn}0(n),则称序列 { x n } \{x_n\} {xn}为无穷小量,记为
    x n = o ( 1 )   ( n → ∞ ) x_n=o(1)\ (n\to\infin) xn=o(1) (n)

  • 无穷小量的性质:

    1. { x n } \{x_n\} {xn}是无穷小量的充分必要条件是 { ∣ x n ∣ } \{|x_n|\} {xn}是无穷小量。
    2. { x n } \{x_n\} {xn}是无穷小量, M M M 是一个常数,则 { M x n } \{Mx_n\} {Mxn}是无穷小量。
    3. lim ⁡ n → ∞ x n = l \lim_{n\to\infin} x_n=l limnxn=l的充分必要条件是 { x n − l } \{x_n-l\} {xnl}是无穷小量。

无穷小量的一个例子

证明序列 { a n n ! }   ( a > 1 ) \{\frac{a^n}{n!}\}\ (a>1) {n!an} (a>1)是无穷小量。

无穷大量

  • 定义 无穷大量 设 { x n } \{x_n\} {xn} 是一个序列,若 ∀ M > 0 , ∃ N \forall M >0,\exist N M>0,N,当 n > N n>N n>N,有 x n > M x_n>M xn>M,则称序列 { x n } \{x_n\} {xn} 为 无穷 大 量 ,记为
    x n → ∞   ( n → ∞ ) x_n\to \infin \ (n\to \infin) xn (n)

  • 性质: : { x n } \{x_n\} {xn} 是无穷小量的充分必要条件是 { 1 x n } \{\frac{1}{x_n}\} {xn1} 是无穷大量。

无穷小量和无穷大量的阶

为了刻画趋向于0 (无穷)的速度

定义(无穷小量的阶):设 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 是当 n → ∞ n\to \infin n 时的无穷小(大)量,且 y n ≠ 0 y_n\ne0 yn=0,当 n n n足够大

  1. lim ⁡ n → ∞ x n y n = 0 \lim_{n\to\infin} \frac{x_n}{y_n}=0 limnynxn=0 则称 { x n } \{x_n\} {xn} 是比 { y n } \{y_n\} {yn} 更高阶的无穷小量(更低阶的无穷大量),记为:
    x n = o ( y n )   ( n → ∞ ) x_n=o(y_n)\ (n\to \infin) xn=o(yn) (n)

  2. lim ⁡ n → ∞ x n y n = l ≠ 0 \lim_{n\to\infin} \frac{x_n}{y_n}=l\ne 0 limnynxn=l=0 则称 { x n } \{x_n\} {xn} 是与 { y n } \{y_n\} {yn} 同阶的无穷小量 (同阶的无穷大量。

  3. lim ⁡ n → ∞ x n y n = 1 \lim_{n\to\infin} \frac{x_n}{y_n}=1 limnynxn=1 则称 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn} 是等价无穷小量(等价无穷大量),记为:
    x n ∼ y n   ( n → ∞ ) x_n\sim y_n\ (n\to \infin) xnyn (n)

  4. ∃ M \exist M M N > 0 N>0 N>0,使得 ∀ n > N \forall n>N n>N ∣ x n ∣ ≤ M ∣ y n ∣ |x_n|\le M|y_n| xnMyn ,则记为:
    x n = O ( y n )   ( n → ∞ ) x_n=O(y_n)\ (n\to \infin) xn=O(yn) (n)

组重要的阶的比较关系

ln ⁡ n < n a 1 < n a 2 < b n < n ! < n n   ( n → ∞ ) ( a 2 > a 1 > 0 ,   b > 0 ) \ln n<n^{a_1}<n^{a_2}<b^{n}<n!<n^n\ (n\to \infin)(a_2>a_1>0,\ b>0) lnn<na1<na2<bn<n!<nn (n)(a2>a1>0, b>0)

注意: < < < 表示的是阶的大小关系

闭区间套定理

{ [ a n , b n ] } \{[a_n,b_n]\} {[an,bn]} 是一列闭区间,并且满足:

  1. [ a n , b n ] ⊇ [ a n + 1 , b n + 1 ] ,   n = 1 , 2 , … [a_n,b_n]\supseteq [a_{n+1},b_{n+1}],\ n=1,2,\dots [an,bn][an+1,bn+1], n=1,2,
  2. lim ⁡ n → ∞ b n − a n = 0 \lim_{n\to\infin} b_n-a_n=0 limnbnan=0

则存在唯一的一点 c ∈ R c\in \mathbb R cR,使得 c ∈ [ a n , b n ] ,   n = 1 , 2 , … c\in [a_n,b_n],\ n=1,2,\dots c[an,bn], n=1,2, ,即
{ c } = ⋂ n = 1 ∞ [ a n , b n ] \{c\}=\bigcap_{n=1}^{\infin}[a_n,b_n] {c}=n=1[an,bn]

聚点原理

  • 定义(聚点):

    E ⊆ R E\sube \mathbb R ER x 0 ∈ R x_0\in \mathbb R x0R 满足:对 ∀ δ > 0 \forall \delta >0 δ>0 ,有 U 0 ( x 0 , δ ) ∩ E ≠ ∅ U_0(x_0,\delta)\cap E\ne\empty U0(x0,δ)E= 则称 x 0 x_0 x0 E E E 的一个聚点。若 x 0 ∈ E x0\in E x0E但是它不是 E E E 的聚点,则称 x 0 x_0 x0 E E E
    一个孤立点,

    ∀ δ > 0 \forall \delta >0 δ>0 ,使得 U 0 ( x 0 , δ ) ∩ E ≠ ∅ U_0(x_0,\delta)\cap E\ne\empty U0(x0,δ)E=

  • 下列命题等价:

    1. x 0 x_0 x0 E E E 的一个聚点

    2. ∀ δ > 0 \forall \delta >0 δ>0 ,有 U 0 ( x 0 , δ ) U_0(x_0,\delta) U0(x0,δ) 中有 E E E 的无穷多个点

    3. 存在 E E E 中互异的点组成的序列 { x n } \{x_n\} {xn} x 0 x_0 x0 为极限点。

      e.g.
      E = { 1 , 1 2 , … , 1 n , …   } E=\{1,\frac{1}{2},\dots,\frac{1}{n},\dots\} E={1,21,,n1,}

  • 聚点原理: R \mathbb R R 中任何一个有界无穷子集至少有一个聚点。

波尔扎诺-魏尔斯特拉斯定理

波尔扎诺-魏尔斯特拉斯定理:任何有界序列必然存在收敛子列。

要点

  • 序列极限的计算方法

    • 定义—— ε − N \varepsilon -N εN语言
    • 四则运算,不等式,夹逼定理
  • 无穷小量和无穷大量

    • 无穷小量阶的比较
    • 一组重要的阶
  • 重要极限 c , e c,e c,e

  • 闭区间套定理

  • 聚点原理

  • 波尔扎诺-魏尔斯特拉斯定理

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值