高数基础:Ch1. 集合论

ch1. 集合论

1. 集合

  • 集合

    “一堆东西放在一起”,称为集合(set),通常用大写字母表示,如:A

  • 元素

    “一堆东西” 里面的一个称之为元素(element),通常用小写字母表示,如:a
    a 属 于 A : a ∈ A a 不 属 于 A : a ∉ A a属于A:a\in A \\ a不属于A:a\notin A aAaAaAa/A

  • 描述方式:列举和描述

    • 列举: A = { 1 , 2 , 3 } A=\{1,2,3\} A={1,2,3}
    • 描述: B = { x : x 是 有 理 数 } B=\{x:x是有理数\} B={x:x}
  • 子集

    • 子集:A的每一个元素都在B中,记为 A ⊆ B A\subseteq B AB
    • 相等:记为 A = B A=B A=B
    • 真子集: A ⊆ B A\subseteq B AB A ≠ B A\ne B A=B,记为 A ⊂ B A\sub B AB
    • 空集: ∅ \emptyset
  • 集合运算

    • 交集: A ∩ B = { x : x ∈ A   且   x ∈ B } A\cap B=\{x:x\in A \ 且\ x\in B\} AB={x:xA  xB}
      • 满足交换律: A ∩ B = B ∩ A A\cap B=B\cap A AB=BA
    • 并集: A ∪ B = { x : x ∈ A   或   x ∉ B } A\cup B=\{x:x\in A \ 或\ x\notin B\} AB={x:xA  x/B}
      • 满足交换律: A ∪ B = B ∪ A A\cup B=B\cup A AB=BA
    • 差集: A ∖ B = { x : x ∈ A   且   x ∉ B } A\setminus B=\{x:x\in A \ 且\ x\notin B\} AB={x:xA  x/B}
    • 不满足交换律: A ∖ B = B ∖ A A\setminus B=B\setminus A AB=BA
  • 任意 ∀ \forall

    • 例如: ∀ x ∈ A , x 满 足 性 质 P \forall x \in A,x满足性质P xAxP
  • 存在 ∃ \exists

  • 基数:集合中元素的个数成为集合的基数(又称为),记为 ∣ A ∣ |A| A

  • 常见集合

    • 自然数: N \mathbb N N
    • 整数: Z \mathbb Z Z
    • 有理数: Q \mathbb Q Q
    • 实数: R \mathbb R R
    • 复数: C \mathbb C C
      手写体
  • 区间

    • ( a , b ) = { x : a < x < b } (a,b)=\{x:a<x<b\} (a,b)={x:a<x<b}:开区间
    • [ a , b ] = { x : a ≤ x ≤ b } [a,b]=\{x:a\le x \le b\} [a,b]={x:axb}:闭区间
    • ( a , b ] = { x : a < x ≤ b } (a,b]=\{x:a<x\le b\} (a,b]={x:a<xb}:左开右闭区间
    • [ a , b ) = { x : a ≤ x < b } [a,b)=\{x:a\le x <b\} [a,b)={x:ax<b}:左闭右开区间
  • 邻域

    • U ( a , ε ) = { x : a + ε < x < a + ε } U(a,\varepsilon)=\{x:a+\varepsilon< x < a+\varepsilon \} U(a,ε)={x:a+ε<x<a+ε},开区间
      • a 的 epsilon 邻域
    • U 0 ( a , ε ) = { x : a + ε < x < a + ε 且 x ≠ a } U_0(a,\varepsilon)=\{x:a+\varepsilon< x < a+\varepsilon 且x\ne a\} U0(a,ε)={x:a+ε<x<a+εx=a},开区间
      • a 的 epsilon 空心邻域
  • 数轴:实数集上的数和数轴上的点一一对应

2. 实数集

实数集

问题:

  • Q1:有理数是否布满数轴?
    • A1:否,密集的分布在数轴上
  • Q2:有理数在数轴上以何种状态存在?
    • A2:稠密, ∀ ( a , b ) ∩ Q ≠ ∅ \forall (a,b)\cap \mathbb Q \ne \empty (a,b)Q=,即: Q \mathbb Q Q R \mathbb R R稠密
  • Q3:似乎实数集好像是“连续”的,那么怎么描述连续性
    • A3:
  • 完备性的刻画(实数集的完备性):
    1. 在实数域中,任意一个单调有界序列必然有极限
    2. 确界存在定理

确界存在定理

  • 上界

    集合 E ⊆ R E\subseteq \mathbb R ER,且 E ≠ ∅ E\ne\empty E=,如果存在 M ∈ R M\in\mathbb R MR,使得对于 ∀ x ∈ E \forall x \in E xE,有 x ≤ M x\le M xM,则称 E E E有上界,并且说 M M M E E E的一个上界

  • 下界

    集合 E ⊆ R E\subseteq \mathbb R ER,且 E ≠ ∅ E\ne\empty E=,如果存在 M ∈ R M\in\mathbb R MR,使得对于 ∀ x ∈ E \forall x \in E xE,有 x ≥ M x\ge M xM,则称 E E E有下界,并且说 M M M E E E的一个下界

  • 上确界:上界中最小的一个上界叫做上确界

    E ⊆ R E\subseteq \mathbb R ER是一个非空数集,如果 M ∈ R M\in\mathbb R MR满足:

    1. M M M E E E的一个上界
    2. ∀ ε > 0 \forall \varepsilon >0 ε>0,存在 x ′ ∈ E x' \in E xE使得 x ′ > M − ε x'>M-\varepsilon x>Mε

    则称 M M M E E E上确界,记为 M = s u p E M=supE M=supE

  • 下确界:下界中最大的一个下界叫做下确界

    E ⊆ R E\subseteq \mathbb R ER是一个非空数集,如果 M ∈ R M\in\mathbb R MR满足:

    1. M M M E E E的一个下界
    2. ∀ ε > 0 \forall \varepsilon >0 ε>0,存在 x ′ ∈ E x' \in E xE使得 x ′ < M + ε x'<M+\varepsilon x<M+ε

    则称 M M M E E E下确界,记为 M = i n f E M=infE M=infE

  • 确界存在定理

    • 非空有上界的实数集必然有上确界
    • 非空有下界的实数集必然有下确界

即:如果有 E ⊆ R E\subseteq \mathbb R ER E = ( a , b ] E=(a,b ] E=(a,b]

则, a = i n f E a=infE a=infE b = s u b E b=subE b=subE

实数集的基数

问题:

  • 有理数有多少个?
  • 无理数有多少个?
  • 实数有多少个?
    • A:无穷个
  • 无穷和无穷是不是一样大?
    • A:无穷是无法比较大小的,因此引入了的概念
  • 等势

    • 集合A到集合B存在双射,称A与B等势,记为 A ≈ B A\approx B AB

    • 特别地,称与自然数集 N \mathbb N N等势的集合为可列集(可数集合,countable set)

      一切和自然数集合等势的集合都称为“可数集合”(countable set),否则就叫做“不可数集合”(uncountable set)

  • Z ≈ N \mathbb Z \approx \mathbb N ZN:整数集和自然数集等势

    • 举例:数整数集,用1标号0,用2标号1,用3标号-1,用4标号2,用5标号-1……,发现可以用自然数集对整数集标号,元素一一对应

在这里插入图片描述
N ≈ Q \mathbb N \approx \mathbb Q NQ:自然数集和实数集等势

  • 举例:所有有理数都可以写成分数形式 q p \frac{q}{p} pq ,则有 q p \frac{q}{p} pq 与二维平面上的点 ( p , q ) (p,q) (p,q)一一对应,则有 N × N \mathbb N \times \mathbb N N×N 可数, 则实数集 Q \mathbb Q Q 可数,因此等势(消除重复的分数,如1/2和2/4)

在这里插入图片描述

  • ( 0 , 1 ) ≈ R (0,1) \approx \mathbb R (0,1)R:(0,1)区间和实数集等势

  • [ 0 , 1 ] ≈ R [0,1]\approx \mathbb R [0,1]R

  • N ≉ R \mathbb N \not \approx \mathbb R NR康托定理(根据康托定理和 N ≈ Q \mathbb N \approx \mathbb Q NQ可得: Q ≉ R \mathbb Q \not \approx \mathbb R QR

在这里插入图片描述

3. 映射

  • 映射

    设A、B是两个非空集合,如果存在一个法则 f f f ,使得对A中的每个元素a,按法则 f f f ,在B中有唯一确定的元素b与之对应,则称 f f f 为从A到B的映射,记作:
    f : A → B f:A\to B f:AB

    • b:称为元素a在映射 f f f 下的,记作:

    b = f ( a ) b=f(a) b=f(a)

    • a:称为b关于映射 f f f原象
  • A:称为原象集

    • B:称为为象集
  • 单射(嵌入映射):只能一对一,不能多对一

  • 满射(到上映射):只要Y中的元素在X中都能找到原像就行了(一对一,多对一都行)

  • 双射(一一映射):双射就是既是单射又是满射(一个对一个,每个都不漏掉).

在这里插入图片描述

单射就是只能一对一,不能多对一

4. 函数

函数
  • 函数:是数集数集映射

  • 函数

    对于给定的集合 X ⊆ R X\subseteq \mathbb R XR,如果存在一个对应法则 f f f,使得对于 X X X中的每一个数 x x x,在 R \mathbb R R 中存在唯一的数 y y y 与之对应,则称对应法则 f f f 为从 X X X R \mathbb R R 的一个函数,记为:
    $$
    f:X\to \mathbb R\

    x \mapsto y=f(x)
    $$
    其中

    • y y y 称为 f f f x x x 的值
    • X X X :称为函数 f f f 的定义域
    • 数集 { f ( x ) : x ∈ X } \{f(x):x\in X\} {f(x):xX} :称为函数 f f f 的值域,记为 f ( x ) f(x) f(x)
    • x x x:称为自变量
    • y y y:称为因变量
基本初等函数

六类基本初等函数

  • 常值函数: y = C y=C y=C
    • C:代表常数
  • 幂函数: y = x α   ,    α > 0 y=x^\alpha\ ,\ \ \alpha>0 y=xα ,  α>0
  • 指数函数: y = a x   ,    a > 0 y=a^x\ ,\ \ a>0 y=ax ,  a>0
  • 对数函数: y = log ⁡ a x   ,    a > 0 , a ≠ 1 y=\log_{a}{x}\ ,\ \ a>0,a\ne 1 y=logax ,  a>0,a=1
  • 三角函数:
    • y = sin ⁡ x y=\sin{x} y=sinx
    • y = cos ⁡ x y=\cos{x} y=cosx
    • y = tan ⁡ x y=\tan{x} y=tanx
    • y = cot ⁡ x = 1 tan ⁡ x y=\cot{x}=\frac{1}{\tan{x}} y=cotx=tanx1
    • y = sec ⁡ x = 1 cos ⁡ x y=\sec{x}=\frac{1}{\cos{x}} y=secx=cosx1
    • y = csc ⁡ x = 1 sin ⁡ x y=\csc{x}=\frac{1}{\sin{x}} y=cscx=sinx1
  • 反三角函数:注意定义域和值域的问题
    • y = arcsin ⁡ x y=\arcsin x y=arcsinx
      • sin ⁡ x \sin x sinx定义域: x ∈ ( − π 2 , π 2 ) x\in (-\frac{\pi}{2},\frac{\pi}{2}) x(2π,2π),求反函数
    • y = arccos ⁡ x y=\arccos{x} y=arccosx
      • cos ⁡ x \cos x cosx定义域: x ∈ ( 0 , π ) x\in (0,\pi) x(0,π),求反函数
    • y = arctan ⁡ x y=\arctan{x} y=arctanx
      • tan ⁡ x \tan x tanx定义域: x ∈ ( − π 2 , π 2 ) x\in (-\frac{\pi}{2},\frac{\pi}{2}) x(2π,2π),求反函数

六边形法则

在这里插入图片描述

**规律1.**六边形对角线互为倒数(倒数关系)

  • sin ⁡ x = 1 sec ⁡ x \sin x =\frac{1}{\sec x} sinx=secx1

规律2.三角形最高两端的平方之和等于低端平方(平方关系)

  • sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^2 x +\cos^2 x = 1 sin2x+cos2x=1
  • t a n 2 x + 1 = s e c 2 x tan^2x + 1 =sec^2 x tan2x+1=sec2x

规律3.任意一点的值等于这一点顺时针的第一个值与第二个值的比值

  • tan ⁡ x = sin ⁡ x cos ⁡ x \tan x=\frac{\sin x}{\cos x} tanx=cosxsinx

规律4.任意一点的值等于紧挨着这一点的两个端点的值的积

函数的运算

四则运算
( f 1 ± f 2 ) ( x ) = f 1 ( x ) ± f 2 ( x ) (f_1±f_2)(x)=f_1(x)±f_2(x) (f1±f2)(x)=f1(x)±f2(x)

( f 1 f 2 ) ( x ) = f 1 ( x ) f 2 ( x ) (f_1f_2)(x)=f_1(x)f_2(x) (f1f2)(x)=f1(x)f2(x)

f 1 f 2 ( x ) = f 1 ( x ) f 2 ( x ) , f 2 ( x ) ≠ 0 \frac{f_1}{f_2}(x)=\frac{f_1(x)}{f_2(x)},f_2(x)\ne0 f2f1(x)=f2(x)f1(x),f2(x)=0

复合运算
y = f 2 ( f 1 ( x ) ) y=f_2(f_1(x)) y=f2(f1(x))

f 1 : A → B f 2 : B → C f 1 ( f 2 ) : A → C f_1:A\to B\\ f_2:B\to C\\ f_1(f_2):A\to C f1:ABf2:BCf1(f2):AC

反函数

如果 f f f 是双射,那么 f f f 可逆,记为 f − 1 f^{-1} f1

基本初等函数经过有限次四则运算复合运算所得到的函数称为初等函数

特殊函数
  • 符号函数

y = s g n ( x ) = { 1 ,    x > 0 0 ,    x = 0 − 1 ,    x < 0 y=sgn(x)=\left\{ \begin{aligned} 1 &, \ \ x>0 \\ 0 &, \ \ x=0 \\ -1 &, \ \ x<0 \end{aligned} \right. y=sgn(x)=101,  x>0,  x=0,  x<0

在这里插入图片描述

  • 高斯 (Gauss) 取整函数(阶梯函数)

y = [ x ] y=[x] y=[x]

如果 n ≤ x ≤ n + 1 n\le x\le n+1 nxn+1,则使 x = n x=n x=n(n为整数)

在这里插入图片描述

  • 狄利克雷 (Dirichlet)函数

y = s g n ( x ) = { 1 ,    x ∈ Q 0 ,    x ∈ R ∖ Q y=sgn(x)=\left\{ \begin{aligned} 1 &, \ \ x\in \mathbb Q \\ 0 &, \ \ x\in \mathbb R \setminus \mathbb Q \end{aligned} \right. y=sgn(x)={10,  xQ,  xRQ

有理点映射到1,无理点映射到0

  • 黎曼 (Riemann)函数

y = R ( x ) = { 1 q ,    x = p q ∈ ( 0 , 1 ) , p 和 q 为 互 素 的 正 整 数 0 ,    x ∈ ( 0 , 1 ) ∖ Q   或 者   x = 0   o r   1 y=R(x)=\left\{ \begin{aligned} \frac{1}{q} &, \ \ x=\frac{p}{q}\in (0,1),p和q为互素的正整数\\ 0 &, \ \ x\in (0,1)\setminus \mathbb Q \ 或者 \ x=0 \ or\ 1 \end{aligned} \right. y=R(x)=q10,  x=qp(0,1),pq,  x(0,1)Q  x=0 or 1

[ 0 , 1 ] [0,1] [0,1] 映射到实数 R \mathbb R R

互素的p,q组成的分数 q p \frac{q}{p} pq即为最简的分数(既约真分数)

在这里插入图片描述

函数的性质

y = f ( x ) y=f(x) y=f(x)定义在 X X X

  • 有界性

    存在常数 M M M,使得对 ∀ x ∈ X \forall x \in X xX,都有 f ( x ) ≤ M f(x)\le M f(x)M,称 f ( x ) f(x) f(x) X X X有上界

    存在常数 M M M,使得对 ∀ x ∈ X \forall x \in X xX,都有 f ( x ) ≥ M f(x)\ge M f(x)M,称 f ( x ) f(x) f(x)在𝑋有下界

    f ( x ) f(x) f(x) X X X上有上界且下称 f ( x ) f(x) f(x) X X X有界

    e.g.

    • y = sin ⁡ x y=\sin x y=sinx
    • y = 1 x y=\frac{1}{x} y=x1:在 R + \mathbb R^+ R+有下界,但没上界,并不是有界函数
  • 单调性

    对于任意 x 1 , x 2 ∈ X x_1,x_2 \in X x1,x2X,只要 x 1 < x 2 x_1<x_2 x1<x2,就有 f ( x 1 ) ≤ f ( x 2 ) f(x_1)\le f(x_2) f(x1)f(x2) f ( x 1 ) ≥ f ( x 2 ) f(x_1)\ge f(x_2) f(x1)f(x2) ),称 f ( x ) f(x) f(x) X X X上单调递增(减),如果把 ≤ \le ≥ \ge )换成 < < < > > >),则称严格单调递增(减)

    e.g.

    • y = sin ⁡ x y=\sin x y=sinx
  • 周期性

    存在 T > 0 T>0 T>0,使得对于 ∀ x ∈ X \forall x\in X xX,有 f ( x ) + T = f ( x ) f(x)+T=f(x) f(x)+T=f(x),称 T T T是周期。

    e.g.

    • 𝑡𝑎𝑛 𝑥,周期是 π \pi π
  • 奇偶性

    前提:定义域 X X X 关于原点对称

    奇函数:图像关于原点对称

    f ( x ) = − f ( − x ) f(x)=-f(-x) f(x)=f(x)

    e.g.

    • 𝑠𝑖𝑛 𝑥

    偶函数:图像关于y轴对称

    f ( x ) = f ( − x ) f(x)=f(-x) f(x)=f(x)

    e.g.

    • 𝑐𝑜𝑠 𝑥

    Ex. 证明奇函数的反函数也是奇函数

在这里插入图片描述

4. 常用不等式

  • 三角不等式

∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ |x+y|\le|x|+|y| x+yx+y

∣ x ⃗ + y ⃗ ∣ ≤ ∣ x ⃗ ∣ + ∣ y ⃗ ∣ |\vec x+\vec y|\le|\vec x|+|\vec y| x +y x +y

  • 伯努利(Bernoulli)不等式

    对于任意的 x ≥ − 1 x\ge -1 x1和任意的正整数n,有

1 + x n ≥ 1 + n x 1+x^n\ge 1+nx 1+xn1+nx

证明:用数学归纳法

x > − 1 x>-1 x>1,且 x ≠ 0 x≠0 x=0,n是不小于2的整数,则 ( 1 + x ) n ≥ 1 + n x (1+x)^n≥1+nx (1+x)n1+nx

证明:

先证明对所有正整数不等式成立。用数学归纳法:

当n=1,上个式子成立,

设对n-1,有:

( 1 + x ) ( n − 1 ) ≥ 1 + ( n − 1 ) x (1+x)^{(n-1)}\ge1+(n-1)x (1+x)(n1)1+(n1)x成立。


$$
\begin{align*}
(1+x)n&=(1+x){(n-1)}(1+x)

\
&\ge1+(n-1)x\
&=1+(n-1)x+x+(n-1)x^2\
&=1+nx+nx2-x2

\
&\ge1+nx

\end{align*}
$$
就是对一切的自然数,

x > = − 1 x>=-1 x>=1,有

( 1 + x ) n > = 1 + n x (1+x)^n>=1+nx (1+x)n>=1+nx

  • 算数-几何平均值不等式

    对于任意n个非负实数 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn
    x 1 + x 2 + ⋯ + x n n ≥ x 1 x 2 … x n n \frac{x_1+x_2+ \dots +x_n}{n}\ge \sqrt[n]{x_1x_2\dots x_n} nx1+x2++xnnx1x2xn

    • 即:算术均值 ≥ \ge 几何均值
    • x 1 = x 2 = ⋯ = x n x_1=x_2=\dots =x_n x1=x2==xn时,取等号

要点

  • 集合论基础

    • 定义
    • 运算
  • 集合之间的关系

    • 映射
  • 特殊 的集合 —— 实数集

    • 完备性
    • 实数集不可列
  • 特殊的映射 —— 函数

    • 初等函数,特殊函数

    • 函数的运算,性质

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值