数学分析(九)-定积分3-2-达布和1:达布上/下和【设T={Δ₁…Δₙ}为对[a,b]的任一分割,每个Δᵢ上存在上/下确界Mᵢ/mᵢ,∑Mᵢxᵢ、∑mᵢxᵢ称为上和、下和】

本文介绍了在数学分析中,如何利用达布和(上和与下和)来判断一个函数在区间[a, b]上的可积性。通过分析函数在每个子区间的上确界Mi和下确界mi,可以得出上和S(T)和下和s(T),进而探讨当分割的长度趋于0时,这些和的极限,从而确定函数的可积性。" 127478757,16053753,使用C++实现坐标类,['C++'],"['C++', '坐标', '类', '构造函数', '析构函数', '输入', '显示', '平均值']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要判断一个函数是否可积, 固然可以根据定义, 直接考察积分和是否能无限接近某一常数,但由于积分和的复杂性和那个常数不易预知,因此这是极其困难的.下面即将给出的可积准则只与被积函数本身有关, 而不涉及定积分的值.

T = ∣ Δ i ∣ i = 1 , 2 , ⋯   , n } \left.T=\left|\Delta_{i}\right| i=1,2, \cdots, n\right\} T=Δii=1,2,,n} 为对 [ a , b ] [a, b] [a,b] 的任一分割. 由 f f f [ a , b ] [a, b] [a,b] 上有界,则它在每个 Δ i \Delta_{i} Δi上存在上、下确界:

M i = sup ⁡ x ∈ Δ i f ( x ) , m i = inf ⁡ x ∈ Δ i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值