要判断一个函数是否可积, 固然可以根据定义, 直接考察积分和是否能无限接近某一常数,但由于积分和的复杂性和那个常数不易预知,因此这是极其困难的.下面即将给出的可积准则只与被积函数本身有关, 而不涉及定积分的值.
设 T = ∣ Δ i ∣ i = 1 , 2 , ⋯ , n } \left.T=\left|\Delta_{i}\right| i=1,2, \cdots, n\right\} T=∣Δi∣i=1,2,⋯,n} 为对 [ a , b ] [a, b] [a,b] 的任一分割. 由 f f f 在 [ a , b ] [a, b] [a,b] 上有界,则它在每个 Δ i \Delta_{i} Δi上存在上、下确界:
M i = sup x ∈ Δ i f ( x ) , m i = inf x ∈ Δ i