PyTorch中使用inplace operation导致无法梯度反向传播

PyTorch中使用inplace operation导致无法梯度反向传播

问题

  • 今天写代码的是时候想要实现这样一个功能,假设有一个输入的时间序列input1input1.shape = [T, D],然后我想对其中的input1[start:end, :]进行扰动,代码如下
import torch
perturbation1 = torch.nn.Parameter(torch.rand(shape))
input1 = torch.rand(shape)
# perturbed_input1 and input1 share common memory
perturbed_input1 = input1[:]
perturbed_input1[0:2,:] = input1[0:2] * (1 + perturbation1[0:2])
loss1 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值