【分治算法】最多约数问题

题意:
最多约数问题:正整数x的约数是能整除x的正整数。正整数x 的约数个数记为div(x)。例如,1,2,5,10 都是正整数10 的约数,且div(10)=4。设a 和b 是2 个正整数,a≤b,找出a和b之间约数个数最多的数x及其最多约数个数。

思路:

  1. 以[a,b]区间的数为单位, 暴力依次找出[a,b]每个数的约数个数
  2. 以质因子为单位,搜索每个落在区间[a,b]的数的约数个数

第二种的基本思想是一个定理:
设数 x = a1p1 * a2p2 * a3p3 * a4p4 * … * anpn(a1, a2, a3…是质因子),那么x的约数个数为(p1+1) * (p2+1) * (p3+1) * … *(pn+1)。

最多约数问题答案解析与勘误

暴力法

这个如果约数个数一样多,输出哪一个呢?
大的?还是小的?

由于循环次数太多了,小数可以使用这个方法,大数的话,计算太慢了。。。

#include<bits/stdc++.h>
using namespace std;

int main() {
	int a,b;
	cin>>a>>b;
	int max=0,maxi=0;
	for(int i=a; i<=b; i++) {
		int t=0;
		for(int j=1; j<=i; j++) {
			if(i%j==0)
				t++;
		}
		if(max<=t) {
			max=t;
			maxi=i;
		}
	}
	printf("div(%d)=%d\n",maxi,max);
	return 0;
}

改进版

#include<bits/stdc++.h>
using namespace std;

struct stu {
	int n;
	int num;
} stu[100];
int  p=0;

int main() {
	int a,b;
	cin>>a>>b;
	int max=0;
	for(int i=a; i<=b; i++) {
		int t=0;//t记录i的约数个数
		for(int j=1; j<=i; j++) {
			if(i%j==0)
				t++;
		}
		//if(max<t)这个如果约数个数一样多,输出哪一个呢?
		//例子:1 10   1 8  10和8和6的约数都是4且都是最大的
		//最好的方法 当然是全部都输出
		if(t>=max) {
			if(t>max)
				p=0;
			max=t;
			stu[p].n=i;
			stu[p++].num=t;
		}
	}
	for(int i=0; i<p; i++)
		printf("div(%d)=%d\n",stu[i].n,stu[i].num);
	return 0;
}

算法版

#include<bits/stdc++.h>
using namespace std;

struct stu {
	int n;
	int num;
} stu[100];
int t=0;
int p[10000];
//判断n是否是质因数
bool isprime(int n) {
	for(int i=2; i<=sqrt(n); i++) {
		if(n%i==0) {
			return false;
		}
	}
	return true;
}
//求n的约数的个数
int solve(int n) {
	memset(p,0,sizeof(p));
	int count=1;
	int num=n;
	if(num==1)//n==1只有一个约数
		return 1;
	if(isprime(num))//n是质数 只有1和本身2个约数
		return 2;
	for(int i=2; i<=(sqrt(num)+1); i++) { //分解质因子
		if(n%i==0) {
			p[i]++;
			n/=i;
			i--;还原i 质因子可能重复
		}
	}
	for(int i=2; i<=num; i++) {
		if(p[i])
			count*=(p[i]+1);
	}
	return count;
}

int main() {
	int a,b;
	cin>>a>>b;
	int max=0;
	for(int i=a; i<=b; i++) {
		int x=solve(i);
		if(x>=max) {
			if(x>max)
				t=0;
			stu[t].n=i;
			stu[t++].num=x;
			max=x;
		}
	}
	for(int i=0; i<t; i++)
		printf("div(%d)=%d\n",stu[i].n,stu[i].num);
	return 0;
}

【】

#include<bits/stdc++.h>
using namespace std;

int p[10000];
//判断n是否是质因数
bool isprime(int n) {
	for(int i=2; i<=sqrt(n); i++) {
		if(n%i==0) {
			return false;
		}
	}
	return true;
}
//求n的约数的个数
int solve(int n) {
	memset(p,0,sizeof(p));
	int count=1;
	int num=n;
	if(num==1)//n==1只有一个约数
		return 1;
	if(isprime(num))//n是质数 只有1和本身2个约数
		return 2;
	for(int i=2; i<=num; i++) { //分解质因子
		if(n%i==0) {
			p[i]++;
			n/=i;
			i--;//还原i 质因子可能重复
		}
	}
	for(int i=2; i<=num; i++) {
		if(p[i])
			count*=(p[i]+1);
	}
	return count;
}

int main() {
	int a,b;
	cin>>a>>b;
	int max=0,maxi=0;
	for(int i=a; i<=b; i++) {
		int x=solve(i);
		if(x>=max) {
			max=x;
			maxi=i;
		}
	}
	printf("div(%d)=%d\n",maxi,max);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摆烂.MVP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值