8.18号transformer 系列文章阅读

文章介绍了一种名为STGM的时空图混合网络,通过创新的注意力机制处理时空依赖性,结合可变视野卷积和估计器模型提升预测性能。另一篇探讨了使用Extractor替代注意力及动态双自我注意力在图像去雨网络中的应用。最后,SST提出简化版的SwinTransformer模型,不采用滑动窗口,而是基于现有轨迹进行出租车目的地预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STGM: Spatio-Temporal Graph Mixformer for Traffic Forecasting

在这里插入图片描述
提出了一种时空图混合器(STGM)网络,这是一种具有低内存占用的高度优化模型。我们通过利用一种新颖的注意力机制来捕获时间和空间依赖性之间的相关性来解决上述限制。具体来说,我们使用每个头具有可变视场的卷积层来捕获长短期时间依赖性。此外,我们还训练了一个估计器模型,该模型表示节点对所需预测的贡献。估计值与距离矩阵一起反馈给注意力机制。同时,我们使用门控机制和混合器层来进一步选择和合并不同的视角。
代码地址

Attention Is Not All You Need Anymore

在这里插入图片描述
采用一个Extractor替换注意力
在这里插入图片描述

LEARNING IMAGE DERAINING TRANSFORMER NETWORK WITH DYNAMIC DUAL SELF-ATTENTION

在这里插入图片描述
第一个模块就是一个是完整的,一个是稀疏的,将两个融合在一起
第二个模块属于多规模的这种特征提取

SST: A Simplified Swin Transformer-based Model for Taxi Destination Prediction based on Existing Trajectory

在这里插入图片描述
这篇文章没有用swin transformer的滑动窗口,而是用了从小到大的patch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值