Prediction of Infant Cognitive Development with Cortical Surface-Based Multimodal Learning论文速读

Prediction of Infant Cognitive Development with Cortical Surface-Based Multimodal Learning

摘要

探索认知能力与婴儿皮质结构和功能发育之间的关系对于促进我们对早期大脑发育的理解至关重要,然而,由于出生后早期大脑发育复杂而动态,这是非常具有挑战性的。传统方法通常使用结构性 MRI 或静息态功能性 MRI,并依靠皮质包裹后的区域水平特征或区域间连接特征来预测认知评分。然而,这些方法存在两个主要问题:1)空间信息丢失,它丢弃了包含与认知发展相关的丰富信息的关键细粒度空间模式;2)模态信息丢失,忽略了结构图像和功能图像之间的互补信息和相互作用。

本文发明了一种新的框架,即基于皮层表面的多模态学习框架(CSML),以利用细粒度的多模态特征进行认知发展预测。
首先引入了细粒度的表面数据表示,以捕获空间上详细的结构和功能信息。
然后,提出一种双分支网络,分别提取各模态的判别特征,并利用解纠缠策略进一步捕获模态共享和互补信息。
最后,基于认知随年龄发展的先验,开发了年龄引导的认知预测模块。

方法

在这里插入图片描述
给定婴儿的 sMRI 和 fMRI,首先提取其结构和功能特征表示 zs 和 zf。然后,共享的模态 (Com(z)) 和特定 (Spe(z)) 信息被解开,并由模态融合块 F 进一步融合。然后,我们将融合的潜在变量ms,f约束为年龄预测因子Pa与年龄无关,最后从预测因子Pc获得预测的认知分数。

基于表面的细粒度信息表示

网络框架的输入由两个分支组成,分别用于编码皮层结构信息和功能连接信息。将所有模态数据映射到一个公共空间,即注册到 UNC 4D 婴儿表面图谱的皮质表面,并按照完善的管道进一步用 40,962 个顶点重新采样。为了在结构 MRI 中捕获空间细粒度信息,结构分支包含一组具有生物学意义的皮质特性的表面图,包括皮质厚度、表面积、皮质体积、沟深度、平均曲率和平均凸度。为了保留功能连接的细粒度空间模式,我们利用了婴儿专用的皮层功能覆盖图。首先计算所有顶点的平均功能时间序列与每个皮层顶点的功能时间序列之间的 Pearson 相关系数,以构建皮层功能连接 (FC) 映射,然后进行 Fisher 的 r-to-z 变换。最后,使用皮层 FC 图作为功能分支的输入,这些图表征了丰富的空间详细 FC 信息。

模态专用编码器

采用 Spherical Res-Net:f球形卷积层和球形池化层

模态融合模块

为了更好地学习两种模态之间的互补信息,我们进一步将模态特异性的潜在变量zs和zf分解为两部分:Com(zn)和Spe(zn),其中{s,f }分别代表结构(s)和函数(f)相关变量。Com(zn) 是表示模态之间共享信息的通用代码,而 Spe(zn) 是表示将一种模态与另一种模态区分开来的互补信息的特定代码。这种解纠的基本要求是:(1)Com(zn)和Spe(zn)的串联等于zn;(2)Com(zs)和Com(zf)应尽可能相似;(3) Spe(zs) 尽可能与 Spe(zf) 不同。因此,L1 Disen被定义为:
在这里插入图片描述
在这里插入图片描述

认知分数预测

给定组合的多模态信息zs,f,直接回归认知分数是很直观的。然而,考虑到认知功能在生命的最初几年发展迅速,回归者倾向于学习与年龄相关的信息,因此无法区分同一年龄组受试者之间的个体化发展差异。因此,我们通过MLP将组合的多模态信息融合如下,ms,f = F(zs,f),并进一步从ms,f中解析年龄相关方差Age(ms,f)和个体相关不变性Ind(ms,f),以精确评估认知发展水平。这种解缠的基本要求是:(1)Age(ms,f)和Ind(ms,f)的串联等于ms,f;(2)年龄(ms,f)能够通过年龄预测因子Pa进行年龄估计;(3) Ind(ms,f) 无法通过 Pa 进行年龄估计。 因此,L2 Disen 被定义为:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 23
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于基因组的贝叶斯线性和非线性回归模型预测是一种利用基因组数据进行预测的统计方法。这种方法的目标是根据个体的基因组信息来预测其特定性状或表型,如疾病易感性、身高、体重等。 在基因组预测模型中,贝叶斯线性回归是一种常用的方法。它基于贝叶斯统计学理论,通过将先验知识与观测数据相结合,给出后验分布,从而得到模型参数的估计值。贝叶斯线性回归模型通过寻找最可能的参数值,建立起基因组和表型之间的关系,并通过这种关系进行预测。 与贝叶斯线性回归模型相比,贝叶斯非线性回归模型则允许模型参数具有非线性关系。这种模型的优势在于能够更灵活地拟合基因组和表型之间的关系,从而提高预测的准确性。贝叶斯非线性回归模型通常使用非线性函数来描述基因组和表型之间的关系,例如多项式函数或指数函数等。 基于基因组的贝叶斯线性和非线性回归模型预测的关键步骤包括数据准备、模型选择和参数估计。首先,需要对基因组数据进行处理和标准化,以确保数据质量和一致性。然后,选择合适的模型结构和特征,以提高预测精度。最后,通过贝叶斯方法估计模型参数,得到预测结果。 基于基因组的贝叶斯线性和非线性回归模型预测在遗传学、生物信息学和医学研究等领域具有广泛的应用。它不仅可以帮助我们理解基因组与表型之间的关系,还可以用于基因组选择、疾病预测和个体化医学等任务,为人类健康和疾病研究提供重要支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值