3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching Between 3D and 2D Networks

3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching Between 3D and 2D Networks

摘要

  1. 背景与挑战
    医学图像分割通常需要大量精确标注的数据集,但像素级注释是一项耗时的任务,需要领域专家的大量努力,因此在实际临床场景中很难获得。在这种情况下,减少所需标注量是一种更实际的方法。稀疏标注是一种可行的方向,它只涉及对少量切片进行注释,并且与传统的弱标注方法(如边界框和涂鸦)相比,具有几个优点,因为它保留了精确的边界。

  2. 挑战与解决方案
    从稀疏标注学习具有挑战性,因为监督信号稀缺。为了解决这个问题,我们提出了一个框架,可以通过跨教学的方式稳健地从稀疏标注中学习。考虑到3D和2D网络的特点,我们开发了两种伪标签选择策略,即硬软置信度阈值和一致标签融合。

  3. 伪标签选择策略

    • 硬软置信度阈值:通过设置阈值,将预测分为自信(硬)和不确定(软)两类。高于阈值的预测被视为硬标签,低于阈值的预测被视为软标签。
    • 一致标签融合:将来自3D和2D网络的预测结果以一致的方式融合,以生成最终的伪标签。这有助于提高整体分割质量。

GitHub上,可供研究者使用。这为更广泛的社区提供了一个工具,可以在医学图像分割中利用稀疏标注进行学习。
代码地址

方法

在这里插入图片描述

图1. 交叉标注示例。 (a) 和 (b) 是横断面切片的典型标注;© 和 (d) 是冠状面切片的典型标注;(e) 是矢状面切片的典型标注,(f) 是交叉标注的3D视图。
在这里插入图片描述
图2. 提出的3D-2D交叉教学框架概述。对于具有交叉标注的体积,3D网络和2D网络对其进行预测。我们使用硬软阈值和一致的预测融合来选择可信的伪标签。然后,伪标签与地面真值稀疏注释混合,以监督其他网络。

其中,MIX(·, ·) 是一个函数,用GT中的标签替换 预测结果中中那些有标注的体素的标签。

实验结果

在这里插入图片描述

在这里插入图片描述

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值