HC-Net: 自动牙周疾病诊断的混合分类网络

HC-Net: Hybrid Classification Network for Automatic Periodontal Disease Diagnosis

摘要

从全景X射线图像中准确分类牙周病对于临床高效诊疗至关重要,但由于射线照相术中的微妙证据,这是一项具有挑战性的任务。最近的方法试图通过估计图像上的骨质流失来对牙周病进行分类,依赖于放射学手动注释来监督分割或关键点检测。然而,这些射线照相注释与临床金标准不一致,可能导致测量误差和分类不稳定。

在本文中,提出了一种新型的混合分类框架HC-Net,用于从X射线图像中准确分类牙周病。该框架由三个部分组成:牙齿水平分类、患者水平分类和可学习的自适应噪声OR门。在牙齿级分类中,首先引入实例分割来捕获每颗牙齿,然后对每颗牙齿上的牙周病进行分类。在患者层面,利用多任务策略共同学习患者层面的分类和分类激活图(CAM),该图反映了局部病变区域在全景X射线图像上的置信度。最后,通过整合来自两个层次的预测来获得混合分类的自适应噪声或门。
代码地址

方法

在这里插入图片描述
这个流程图还是很清楚的

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值