HC-Net: Hybrid Classification Network for Automatic Periodontal Disease Diagnosis
摘要
从全景X射线图像中准确分类牙周病对于临床高效诊疗至关重要,但由于射线照相术中的微妙证据,这是一项具有挑战性的任务。最近的方法试图通过估计图像上的骨质流失来对牙周病进行分类,依赖于放射学手动注释来监督分割或关键点检测。然而,这些射线照相注释与临床金标准不一致,可能导致测量误差和分类不稳定。
在本文中,提出了一种新型的混合分类框架HC-Net,用于从X射线图像中准确分类牙周病。该框架由三个部分组成:牙齿水平分类、患者水平分类和可学习的自适应噪声OR门。在牙齿级分类中,首先引入实例分割来捕获每颗牙齿,然后对每颗牙齿上的牙周病进行分类。在患者层面,利用多任务策略共同学习患者层面的分类和分类激活图(CAM),该图反映了局部病变区域在全景X射线图像上的置信度。最后,通过整合来自两个层次的预测来获得混合分类的自适应噪声或门。
代码地址
方法
这个流程图还是很清楚的
实验结果