TabAttention:基于表格数据的条件注意力学习

TabAttention: Learning Attention Conditionally on Tabular Data

摘要

医疗数据分析通常结合成像数据和表格数据处理,使用机器学习算法。尽管先前的研究探讨了注意力机制对深度学习模型的影响,但很少有研究将注意力模块与表格数据相结合。本文介绍了一种名为TabAttention的新模块,该模块通过在卷积神经网络(CNNs)中引入条件性训练的注意力机制来提升模型性能。具体来说,研究者将卷积块注意力模块扩展到3D,通过添加时间注意力模块,利用多头自注意力机制来学习注意力图。此外,他们通过整合表格数据嵌入来增强所有注意力模块。

该方法在胎儿体重(FBW)估计任务中得到了验证,使用了92个胎儿腹部超声视频扫描和胎儿生物测量数据。结果表明,TabAttention在FBW预测上优于临床医生和依赖表格数据和/或成像数据的现有方法。这种新颖的方法有潜力在结合成像和表格数据的各种临床工作流程中改善计算机辅助诊断。研究者提供了将TabAttention集成到CNNs中的源码,地址为:
代码地址

方法

在这里插入图片描述
图1. 提出了受CBAM启发的TabAttention模块概览。在现有架构中添加了时间注意力模块,以扩展方法至3D数据处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值