文章目录
FE-STGNN: Spatio-Temporal Graph Neural Network with Functional and Effective Connectivity Fusion for MCI Diagnosis
摘要
这篇论文提出了一种名为FE-STGNN的方法,用于利用功能性磁共振成像(rs-fMRI)数据进行轻度认知障碍(MCI)的诊断。该方法融合了功能连接性(FC)和有效连接性(EC)两种大脑连接性模式,充分利用了它们的互补信息。主要包含以下几个亮点:
- 构建动态功能和有效连接网络:将功能性大脑网络编码为多个图结构,以捕捉时空动态特征。
- 时空图卷积处理:采用空间图卷积网络处理图的结构特征和时间动态特性。
位置编码交叉注意融合:设计了一种利用EC时间演化的因果关联来指导FC网络融合的注意力机制。 - 实验结果验证:该方法在公开MCI诊断数据集上取得了82%的诊断准确率,优于现有最先进的方法。
代码地址
方法
图1. 基于rs-fMRI数据的提出的FE-STGNN模型用于MCI诊断。
a)是所提出方法的整体框架。
b)从红色节点的角度描述了动态FC和EC网络的空间图卷积的详细过程。
c) 说明了如何在EC的引导下,使用注意力机制来聚合FC信息
实验结果