FE-STGNN: 融合功能连接性和有效连接性的时空图神经网络用于轻度认知障碍诊断

FE-STGNN: Spatio-Temporal Graph Neural Network with Functional and Effective Connectivity Fusion for MCI Diagnosis

摘要

这篇论文提出了一种名为FE-STGNN的方法,用于利用功能性磁共振成像(rs-fMRI)数据进行轻度认知障碍(MCI)的诊断。该方法融合了功能连接性(FC)和有效连接性(EC)两种大脑连接性模式,充分利用了它们的互补信息。主要包含以下几个亮点:

  1. 构建动态功能和有效连接网络:将功能性大脑网络编码为多个图结构,以捕捉时空动态特征。
  2. 时空图卷积处理:采用空间图卷积网络处理图的结构特征和时间动态特性。
    位置编码交叉注意融合:设计了一种利用EC时间演化的因果关联来指导FC网络融合的注意力机制。
  3. 实验结果验证:该方法在公开MCI诊断数据集上取得了82%的诊断准确率,优于现有最先进的方法。
    代码地址

方法

在这里插入图片描述
图1. 基于rs-fMRI数据的提出的FE-STGNN模型用于MCI诊断。

a)是所提出方法的整体框架。

b)从红色节点的角度描述了动态FC和EC网络的空间图卷积的详细过程。

c) 说明了如何在EC的引导下,使用注意力机制来聚合FC信息

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值