文章目录
Diffusion-Based Generative Image Outpainting for Recovery of FOV-Truncated CT Images
摘要
背景:截短胸部 CT 扫描的视野 (FOV) 恢复对于准确的身体成分分析至关重要,这涉及量化 CT 切片上的骨骼肌和皮下脂肪组织 (SAT)。
方法:提出了一种使用生成图像外绘恢复截断 CT 切片的方法。训练了一个扩散模型,并将其应用于通过模拟小 FOV 生成的截断 CT 切片。
结果:恢复了截断的解剖结构,并优于以前的状态,尽管训练的数据减少了 87%
方法
图 1.边界框检测器估计代表完整/未截断体的边界框,图像出纸模型恢复截断的 CT 切片的组织。蒙版中的白色区域表示要绘制的区域。
通过从训练期间学习的分布中提取样本,在每次运行中生成不同的切片。使用身体成分分割模型,我们从每个切片中提取肌肉和 SAT 区域。最终输出是肌肉和 SAT 区域最接近中位数的切片