文章目录
Multi-frequency and Smoke Attention-Aware Learning Based Diffusion Model for Removing Surgical Smoke
摘要
背景: 腹腔镜手术中的手术烟雾会降低能见度并对外科医生构成危险,尽管用于机械排烟的医疗设备效果很好,但其手术时间长,因此限制了效率。这项工作旨在通过深度学习策略同时去除手术烟雾并恢复逼真的图像色彩,以提高手术效率和安全性。然而,基于深度网络的烟雾去除仍然是一个挑战,因为:(1) 频谱偏差阻碍了高频模式的学习,(2) 手术烟雾的分布是非均匀的。
目的: 提出了基于多频率和烟雾注意力感知学习的扩散模型来去除手术烟雾。
方法: 频率补偿策略结合了多级频率学习和对比度增强,集成了学习烟雾遮挡的中高频细节的综合功能。烟雾注意力学习采用像素测量,并为扩散模型提供关于烟雾存在位置的互补特征,这有助于在逆扩散过程中恢复无烟区域。多任务学习策略融合了 L1 损失、烟雾感知损失、暗通道先验损失和对比度增强损失,以帮助模型优化。此外,成对的无烟/烟雾数据集由 3D 烟雾渲染引擎模拟。
结果: 提出的方法在合成/真实腹腔镜手术上均优于其他最先进的方法