文章目录
Hierarchical Multiple Instance Learning for COPD Grading with Relatively Specific Similarity
摘要
背景: 慢性阻塞性肺病 (COPD) 是一种以持续气流受限为特征的阻塞性肺病,是全球第三大死亡原因。作为一种异质性肺部疾病,COPD 表型的多样性及其病理学的复杂性对识别其分级构成了重大挑战。许多基于 3D CT 扫描的现有深度学习模型忽略了病灶区域的空间位置信息和不同病灶等级内的相关性。
目的: 将 COPD 分级任务定义为多实例学习 (MIL) 任务,并提出了分层多实例学习 (H-MIL) 模型。
方法: 与以往的 MIL 模型不同,提出的 H-MIL 模型更加关注斑块的空间位置信息,通过多级、面向粒度的方式提取斑块特征,实现对 COPD 的细粒度分类。此外,我们认识到不同级别病变内的显着相关性,并提出了一个相对特异性相似性 (RSS) 函数来捕获这种相对相关性
结果: 在包含 2,142 次 CT 扫描的内部数据集上取得了比比较方法更好的性能
代码地址
方法
- 分层多实例学习:
- 2D切片是一个实例
- subbag 都被视为 bag 的一个子集
- subbag 标签是未知的
- 切片级注意力融合得到f
- 相对具体的相似性:大概就是与绝对相似性类似(现实世界中所有类之间的特征相似性)
实验结果