具有相对具体相似性的 COPD 分级的分层多实例学习

Hierarchical Multiple Instance Learning for COPD Grading with Relatively Specific Similarity

摘要

背景: 慢性阻塞性肺病 (COPD) 是一种以持续气流受限为特征的阻塞性肺病,是全球第三大死亡原因。作为一种异质性肺部疾病,COPD 表型的多样性及其病理学的复杂性对识别其分级构成了重大挑战。许多基于 3D CT 扫描的现有深度学习模型忽略了病灶区域的空间位置信息和不同病灶等级内的相关性。
目的: 将 COPD 分级任务定义为多实例学习 (MIL) 任务,并提出了分层多实例学习 (H-MIL) 模型。
方法: 与以往的 MIL 模型不同,提出的 H-MIL 模型更加关注斑块的空间位置信息,通过多级、面向粒度的方式提取斑块特征,实现对 COPD 的细粒度分类。此外,我们认识到不同级别病变内的显着相关性,并提出了一个相对特异性相似性 (RSS) 函数来捕获这种相对相关性
结果: 在包含 2,142 次 CT 扫描的内部数据集上取得了比比较方法更好的性能
代码地址

方法

在这里插入图片描述

  1. 分层多实例学习:
  • 2D切片是一个实例
  • subbag 都被视为 bag 的一个子集
  • subbag 标签是未知的
  • 切片级注意力融合得到f
  1. 相对具体的相似性:大概就是与绝对相似性类似(现实世界中所有类之间的特征相似性)

实验结果

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值