Python 低通 高通 理想滤波器 巴特沃斯 数字图像处理 频域滤波 图像增强

问题

(一)频域低通滤波

  1. 产生白条图像 f1(x,y)(640×640 大小,中间亮条宽160,高 400,居中,暗处=0,亮处=255)
  2. 设计不同截止频率的理想低通滤波器、Butterworth低通滤波器,对其进行频域增强。观察频域滤波效果,并解释之。

(二)频域高通滤波

  1. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对上述白条图像进行频域增强。观察频域滤波效果,并解释之。
  2. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。

代码

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

"""
(一)频域低通滤波
产生如图所示图象 f1(x,y)(64×64 大小,中间亮条宽16,高 40,居中,暗处=0,亮处=255)
产生实验四中的白条图像。
设计不同截止频率的理想低通滤波器、Butterworth低通滤波器,对其进行频域增强。
观察频域滤波效果,并解释之。
"""


def pro_11():
    def ideal_low_filter(lr, cr, cc, img):
        tmp = np.zeros((img.shape[0], img.shape[1]))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                tmp[i, j] = (1 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 0)
        return tmp

    # 产生白条图像
    im_arr = np.zeros((640, 640))
    for i in range(im_arr.shape[0]):
        for j in range(im_arr.shape[1]):
            if 120 < i < 520 and 240 < j < 400:
                im_arr[i, j] = 255
    im_ft2 = np.fft.fft2(np.array(im_arr))  # 白条图二维傅里叶变换矩阵
    im_ft2_shift = np.fft.fftshift(im_ft2)

    r, c = im_arr.shape[0], im_arr.shape[1]
    cr, cc = r // 2, c // 2  # 频谱中心

    # 理想滤波器
    ideal_filter1 = ideal_low_filter(10, cr, cc, im_ft2_shift)
    ideal_filter2 = ideal_low_filter(30, cr, cc, im_ft2_shift)
    # 求经理想低通滤波器后的图像
    tmp = im_ft2_shift * ideal_filter1
    irreversed_im_ft2 = np.fft.ifft2(tmp)
    tmp2 = im_ft2_shift * ideal_filter2
    irreversed_im_ft22 = np.fft.ifft2(tmp2)

    plt.figure(figsize=(13, 13))
    plt.subplot(221)
    plt.imshow(Image.fromarray(np.abs(im_arr)))
    plt.subplot(223)
    plt.imshow(Image.fromarray(np.abs(im_ft2_shift)))
    plt.subplot(222)
    plt.title("lr=10")
    plt.imshow(Image.fromarray(np.abs(irreversed_im_ft2)))
    plt.subplot(224)
    plt.title("lr=30")
    plt.imshow(Image.fromarray(np.abs(irreversed_im_ft22)))
    plt.show()


def pro_12():
    def butterworth(lr, cr, cc, n, img):
        tmp = np.zeros((img.shape[0], img.shape[1]))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                tmp[i, j] = 1 / (1 + np.sqrt((i - cr) ** 2 + (j - cc) ** 2) / lr) ** (2 * n)
        return tmp

    # 产生白条图像
    im_arr = np.zeros((640, 640))
    for i in range(im_arr.shape[0]):
        for j in range(im_arr.shape[1]):
            if 120 < i < 520 and 240 < j < 400:
                im_arr[i, j] = 255
    im_ft2 = np.fft.fft2(np.array(im_arr))  # 白条图二维傅里叶变换矩阵
    im_ft2_shift = np.fft.fftshift(im_ft2)

    r, c = im_arr.shape[0], im_arr.shape[1]
    cr, cc = r // 2, c // 2  # 频谱中心

    # 理想滤波器
    butterworth1 = butterworth(10, cr, cc, 2, im_arr)
    butterworth2 = butterworth(30, cr, cc, 2, im_arr)
    # 求经理想低通滤波器后的图像
    tmp = im_ft2_shift * butterworth1
    irreversed_im_ft2 = np.fft.ifft2(tmp)
    tmp2 = im_ft2_shift * butterworth2
    irreversed_im_ft22 = np.fft.ifft2(tmp2)

    plt.figure(figsize=(13, 13))
    plt.subplot(221)
    plt.imshow(Image.fromarray(np.abs(im_arr)))
    plt.subplot(223)
    plt.imshow(Image.fromarray(np.abs(im_ft2_shift)))
    plt.subplot(222)
    plt.title("lr=10")
    plt.imshow(Image.fromarray(np.abs(irreversed_im_ft2)))
    plt.subplot(224)
    plt.title("lr=30")
    plt.imshow(Image.fromarray(np.abs(irreversed_im_ft22)))
    plt.show()


def pro_12():
    def ideal_low_filter(lr, cr, cc, img):
        tmp = np.zeros((img.shape[0], img.shape[1]))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                tmp[i, j] = (1 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 0)
        return tmp

    def butterworth(lr, cr, cc, n, img):
        tmp = np.zeros((img.shape[0], img.shape[1]))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                tmp[i, j] = 1 / (1 + np.sqrt((i - cr) ** 2 + (j - cc) ** 2) / lr) ** (2 * n)
        return tmp

    def gauss_noise(img, sigma):
        temp_img = np.float64(np.copy(img))
        h = temp_img.shape[0]
        w = temp_img.shape[1]
        noise = np.random.randn(h, w) * sigma
        noisy_img = np.zeros(temp_img.shape, np.float64)
        if len(temp_img.shape) == 2:
            noisy_img = temp_img + noise
        else:
            noisy_img[:, :, 0] = temp_img[:, :, 0] + noise
            noisy_img[:, :, 1] = temp_img[:, :, 1] + noise
            noisy_img[:, :, 2] = temp_img[:, :, 2] + noise
        # noisy_img = noisy_img.astype(np.uint8)
        return noisy_img

    lena = np.array(Image.open("lena_gray_512.tif"))
    noise_lena = gauss_noise(lena, 25)
    noise_lena_fft2 = np.fft.fft2(noise_lena)
    noise_lena_fft2_shift = np.fft.fftshift(noise_lena_fft2)
    r, c = lena.shape[0], lena.shape[1]
    cr, cc = r // 2, c // 2  # 频谱中心
    butterworth1 = butterworth(30, cr, cc, 2, lena)
    butterworth2 = butterworth(50, cr, cc, 2, lena)
    ideal_filter1 = ideal_low_filter(10, cr, cc, noise_lena_fft2_shift)
    ideal_filter2 = ideal_low_filter(30, cr, cc, noise_lena_fft2_shift)

    btmp1 = noise_lena_fft2_shift * butterworth1
    blena_ift21 = np.fft.ifft2(btmp1)
    btmp2 = noise_lena_fft2_shift * butterworth2
    blena_ift22 = np.fft.ifft2(btmp2)

    itmp1 = noise_lena_fft2_shift * ideal_filter1
    ilena_ift21 = np.fft.ifft2(itmp1)
    itmp2 = noise_lena_fft2_shift * ideal_filter2
    ilena_ift22 = np.fft.ifft2(itmp2)

    plt.figure(figsize=(13, 13))

    plt.subplot(221)
    plt.title("Butterworth Filter: lr=30/100")
    plt.imshow(Image.fromarray(np.abs(blena_ift21)))
    plt.subplot(223)
    plt.imshow(Image.fromarray(np.abs(blena_ift22)))
    plt.subplot(222)
    plt.title("Ideal Filter: lr=10/30")
    plt.imshow(Image.fromarray(np.abs(ilena_ift21)))
    plt.subplot(224)
    plt.imshow(Image.fromarray(np.abs(ilena_ift22)))
    plt.show()


"""
(二)频域高通滤波
1. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对上述白条图像进行频域增强。观察频域滤波效果,并解释之。
2. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。
"""


def pro_2():
    def ideal_high_filter(lr, cr, cc, img):
        tmp = np.zeros((img.shape[0], img.shape[1]))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                tmp[i, j] = (0 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 1)
        return tmp

    def butterworth_high(lr, cr, cc, n, img):
        tmp = np.zeros((img.shape[0], img.shape[1]))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                tmp[i, j] = 1 / (1 + lr / np.sqrt((i - cr) ** 2 + (j - cc) ** 2)) ** (2 * n)
        return tmp

    def gauss_noise(img, sigma):
        temp_img = np.float64(np.copy(img))
        h = temp_img.shape[0]
        w = temp_img.shape[1]
        noise = np.random.randn(h, w) * sigma
        noisy_img = np.zeros(temp_img.shape, np.float64)
        if len(temp_img.shape) == 2:
            noisy_img = temp_img + noise
        else:
            noisy_img[:, :, 0] = temp_img[:, :, 0] + noise
            noisy_img[:, :, 1] = temp_img[:, :, 1] + noise
            noisy_img[:, :, 2] = temp_img[:, :, 2] + noise
        # noisy_img = noisy_img.astype(np.uint8)
        return noisy_img

    def lena_proceed():
        lena = np.array(Image.open("lena_gray_512.tif"))
        noise_lena = gauss_noise(lena, 25)
        noise_lena_fft2 = np.fft.fft2(noise_lena)
        noise_lena_fft2_shift = np.fft.fftshift(noise_lena_fft2)
        r, c = lena.shape[0], lena.shape[1]
        cr, cc = r // 2, c // 2  # 频谱中心
        butterworth1 = butterworth_high(10, cr, cc, 1, lena)
        butterworth2 = butterworth_high(5, cr, cc, 1, lena)
        ideal_filter1 = ideal_high_filter(10, cr, cc, noise_lena_fft2_shift)
        ideal_filter2 = ideal_high_filter(30, cr, cc, noise_lena_fft2_shift)

        btmp1 = noise_lena_fft2_shift * butterworth1
        blena_ift21 = np.fft.ifft2(btmp1)
        btmp2 = noise_lena_fft2_shift * butterworth2
        blena_ift22 = np.fft.ifft2(btmp2)

        itmp1 = noise_lena_fft2_shift * ideal_filter1
        ilena_ift21 = np.fft.ifft2(itmp1)
        itmp2 = noise_lena_fft2_shift * ideal_filter2
        ilena_ift22 = np.fft.ifft2(itmp2)

        plt.figure(figsize=(13, 13))

        plt.subplot(221)
        plt.title("Butterworth Filter: lr=30/5")
        plt.imshow(Image.fromarray(np.abs(blena_ift21)))
        plt.subplot(223)
        plt.imshow(Image.fromarray(np.abs(blena_ift22)))
        plt.subplot(222)
        plt.title("Ideal Filter: lr=10/30")
        plt.imshow(Image.fromarray(np.abs(ilena_ift21)))
        plt.subplot(224)
        plt.imshow(Image.fromarray(np.abs(ilena_ift22)))
        plt.show()

    def white_bar_proceed():
        # 产生白条图像
        im_arr = np.zeros((640, 640))
        for i in range(im_arr.shape[0]):
            for j in range(im_arr.shape[1]):
                if 120 < i < 520 and 240 < j < 400:
                    im_arr[i, j] = 255
        im_ft2 = np.fft.fft2(np.array(im_arr))  # 白条图二维傅里叶变换矩阵
        im_ft2_shift = np.fft.fftshift(im_ft2)

        r, c = im_arr.shape[0], im_arr.shape[1]
        cr, cc = r // 2, c // 2  # 频谱中心

        butterworth1 = butterworth_high(30, cr, cc, 1, im_arr)
        butterworth2 = butterworth_high(5, cr, cc, 1, im_arr)
        ideal_filter1 = ideal_high_filter(10, cr, cc, im_ft2_shift)
        ideal_filter2 = ideal_high_filter(30, cr, cc, im_ft2_shift)

        btmp1 = im_ft2_shift * butterworth1
        blena_ift21 = np.fft.ifft2(btmp1)
        btmp2 = im_ft2_shift * butterworth2
        blena_ift22 = np.fft.ifft2(btmp2)

        itmp1 = im_ft2_shift * ideal_filter1
        ilena_ift21 = np.fft.ifft2(itmp1)
        itmp2 = im_ft2_shift * ideal_filter2
        ilena_ift22 = np.fft.ifft2(itmp2)

        plt.figure(figsize=(13, 13))

        plt.subplot(221)
        plt.title("Butterworth Filter: lr=30/5")
        plt.imshow(Image.fromarray(np.abs(blena_ift21)))
        plt.subplot(223)
        plt.imshow(Image.fromarray(np.abs(blena_ift22)))
        plt.subplot(222)
        plt.title("Ideal Filter: lr=10/30")
        plt.imshow(Image.fromarray(np.abs(ilena_ift21)))
        plt.subplot(224)
        plt.imshow(Image.fromarray(np.abs(ilena_ift22)))
        plt.show()

    lena_proceed()
    white_bar_proceed()


if __name__ == '__main__':
    pro_11()
    pro_12()
    pro_2()

结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数字图像处理中,高通滤波器用于增强图像中的高频细节,如边缘和纹理。Python提供了多种库和方法来实现高通滤波。下面是一些常用的高通滤波器及其实现示例: 1. 理想高通滤波器(Ideal Highpass Filter): ```python import numpy as np import cv2 from matplotlib import pyplot as plt # 读取图像进行灰度化处理 image = cv2.imread('image.jpg', 0) # 进行二维傅里叶变换 f = np.fft.fft2(image) fshift = np.fft.fftshift(f) # 构建理想高通滤波器 rows, cols = image.shape crow, ccol = rows // 2, cols // 2 D = 30 # 截止频率 mask = np.ones((rows, cols), np.uint8) mask[crow - D:crow + D, ccol - D:ccol + D] = 0 # 将滤波器应用于频域图像 fshift_filtered = fshift * mask # 将滤波后的频域图像转回原始图像域 f_ishift = np.fft.ifftshift(fshift_filtered) image_filtered = np.fft.ifft2(f_ishift) image_filtered = np.abs(image_filtered) # 显示原始图像滤波后的图像 plt.subplot(121), plt.imshow(image, cmap='gray') plt.title('Original Image') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(image_filtered, cmap='gray') plt.title('Filtered Image') plt.xticks([]), plt.yticks([]) plt.show() ``` 2. 巴特沃斯高通滤波器(Butterworth Highpass Filter): ```python import numpy as np import cv2 from matplotlib import pyplot as plt from scipy.ndimage import filters # 读取图像进行灰度化处理 image = cv2.imread('image.jpg', 0) # 进行巴特沃斯高通滤波 D = 30 # 截止频率 n = 2 # 阶数 filtered_image = filters.gaussian_high_pass(image, D, n) # 显示原始图像滤波后的图像 plt.subplot(121), plt.imshow(image, cmap='gray') plt.title('Original Image') plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(filtered_image, cmap='gray') plt.title('Filtered Image') plt.xticks([]), plt.yticks([]) plt.show() ``` 这里我们使用了SciPy库中的`filters.gaussian_high_pass`函数来实现巴特沃斯高通滤波。 这些示例演示了如何使用理想高通滤波器巴特沃斯高通滤波器图像进行处理。你可以根据需要调整截止频率和其他参数,以达到不同滤波效果。 希望这些示例对你有帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值