一种基于改进的LeNet-5 CNN模型通过图像监控雾度的方法

本文探讨了一种基于改进的LeNet-5卷积神经网络模型,用于通过图像识别监控雾度。传统的除雾算法主要关注图像去雾,而较少关注雾度图像的识别。调整后的LeNet-5模型在识别准确率上达到98.308%,优于AlexNet模型,且训练时间更短,表明在雾度图像识别中具有优势。研究还发现,卷积核大小和数量以及优化器的选择对模型性能有显著影响,Adam优化器在处理大规模数据和噪声时表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍
近年来,空气污染不仅困扰发达国家,也有许多发展中国家,尤其是快速发展中的国家,例如中国和印度.在阴霾天气条件下,空气中有害颗粒物的浓度会升高,这对人民的健康构成了巨大威胁,对社会和经济发展构成了严重的障碍.此外,在雾霾天气条件下,能见度会大大降低,人们的生活方式受到了极大的影响,所拍摄图像的质量严重下降,个人或工业企业的户外监视也受到影响,例如电力线监视系统,铁路视频监视系统,交通监视系统,甚至边界探测监测系统。由于缺乏监测,雾霾预警,许多死亡事件发生,造成严重的社会和经济损失。雾霾图像极大地给社会带来不便因此,已经进行了许多关于雾度图像的研究,其中大部分集中在去雾算法上以改善图像质量。
除雾算法有两种:一种是多图像融合,另一种是对单个图像进行除雾。原始的除雾算法是通过多图像融合方法实现图像除雾,通过在相同场景或相似场景中进行对比来融合图像,最终减弱了雾度对图像的影响。多图像融合除雾算法的主要问题是多图像采集。这时,单张图片除雾算法应运而生。He等人提出的除雾算法。奠定了基础.其主要思想是利用大气辐射传导模型评估雾度对光的影响,然后消除对整个图像的干扰,以达到除雾效果。为了提高图像质量,已经推出了许多除雾算法,例如.随着人工智能的兴起,出现了一种新的除雾算法网络模型。端到端网络除雾算法.首先,它提取所有与雾度相关的特征,与现有的除雾算法建立关系,并最终通过非线性激活函数输出无雾图像。

到目前为止,除雾算法的性能非常出色。然而,在计算机视觉领域快速发展的时代,很少有研究者专注于雾度图像的识别。卷积神经网络(CNN)是深度学习中使用最广泛的框架。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值