窗口

问题描述  在某图形操作系统中,有 N 个窗口,每个窗口都是一个两边与坐标轴分别平行的矩形区域。窗口的边界上的点也属于该窗口。窗口之间有层次的区别,在多于一个窗口重叠的区域里,只会显示位于顶层的窗口里的内容。

当你点击屏幕上一个点的时候,你就选择了处于被点击位置的最顶层窗口,并且这个窗口就会被移到所有窗口的最顶层,而剩余的窗口的层次顺序不变。如果你点击的位置不属于任何窗口,则系统会忽略你这次点击。

现在我们希望你写一个程序模拟点击窗口的过程。输入格式  输入的第一行有两个正整数,即 N 和 M。(1 ≤ N ≤ 10,1 ≤ M ≤ 10)

接下来 N 行按照从最下层到最顶层的顺序给出 N 个窗口的位置。 每行包含四个非负整数 x1, y1, x2, y2,表示该窗口的一对顶点坐标分别为 (x1, y1) 和 (x2, y2)。保证 x1 < x2,y1 2。

接下来 M 行每行包含两个非负整数 x, y,表示一次鼠标点击的坐标。

题目中涉及到的所有点和矩形的顶点的 x, y 坐标分别不超过 2559 和  1439。输出格式  输出包括 M 行,每一行表示一次鼠标点击的结果。如果该次鼠标点击选择了一个窗口,则输出这个窗口的编号(窗口按照输入中的顺序从 1 编号到 N);如果没有,则输出"IGNORED"(不含双引号)。样例输入3 4

0 0 4 4

1 1 5 5

2 2 6 6

1 1

0 0

4 4

0 5样例输出2

1

1

IGNORED样例说明  第一次点击的位置同时属于第 1 和第 2 个窗口,但是由于第 2 个窗口在上面,它被选择并且被置于顶层。

第二次点击的位置只属于第 1 个窗口,因此该次点击选择了此窗口并将其置于顶层。现在的三个窗口的层次关系与初始状态恰好相反了。

第三次点击的位置同时属于三个窗口的范围,但是由于现在第 1 个窗口处于顶层,它被选择。

最后点击的 (0, 5) 不属于任何窗口。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 15;
struct node{
 int x1, y1, x2, y2;
 int idx;
 int val;
 bool operator < (const node &W)const{
 return val > W.val;
 }
}s[N];
int main(){
 int n, m;
 scanf("%d%d", &n, &m);
 for (int i = 1; i <= n; i ++){
  int x1, y1, x2, y2;
  scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
  s[i] = {x1, y1, x2, y2, i, i};
 }
  int id = n;
 sort(s + 1, s + n + 1);
 // for (int i = 1; i <= n; i ++){
//  cout << s[i].x1 << " " << s[i].y1 << " " << s[i].x2 << " " << s[i].y2 << " " << s[i].idx << " " << s[i].val << endl;
// }
 for (int i = 1; i <= m; i ++){
  int x, y;
  scanf("%d%d", &x, &y);
  bool flag = true;
  for (int j = 1; j <= n; j ++){
   if (x >= s[j].x1 && x <= s[j].x2 && y >= s[j].y1 && y <= s[j].y2){
    cout << s[j].idx << endl;
    s[j].val = ++ id;
    flag = false;
    break;
   }
  }
  if (flag)   cout << "IGNORED" << endl;
  sort(s + 1, s + 1 + n);
   }
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值