刘二大人 《PyTorch深度学习实践》P11 卷积神经网络(高级篇)

卷积神经网络(高级篇)

GoogleNet网络结构

在这里插入图片描述

GoogleNet常被用做基础主干网络,通过一些修改完成我们的需要。

在GoogleNet中把相同的块封装成一个类来减少代码冗余,如图中红色圈出的一个部分称为Inception块。

Inception Model

问题:构造神经网络时,超参数比较难选,比如kenel。

解决办法:把几种卷积都用一下,效果更好的卷积被赋予的权重会更大,自动找到最优卷积的组合,针对每一个卷积结果再进行求和。

在这里插入图片描述

  • concarenate: 把张量拼接起来,必须保证图像的宽度和高度是一致的。

  • Average Pooling 均值池化: 最大池化会导致图像变为原来的一半,均值池化可以人为指定padding 和 stride 来保证输入和输出的图像是一样的。

  • 信息融合: 同一通道的值通过某种运算得到的信息。例如在考试中比较分数高低时是通过对各科分数乘以权重1求总分,因为在多个维度下不太好比较。
    在这里插入图片描述

  • 1*1卷积的作用

  • 最主要目的就是改变通道的数量,减少运算量。卷积核的个数决定了输出的通道数,输入的通道数决定了卷积核的层数/通道个数。

在这里插入图片描述

运算量变成了原来的十分之一,大大提高了计算效率。

代码实现:

在这里插入图片描述

在这里插入图片描述

代码实现:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)


# 2、建立模型
class Inception(torch.nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.branch1X1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)

        self.branch5X5 = torch.nn.Conv2d(16, 24, kernel_size=5, padding=2)

        self.branch3X3_1 = torch.nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3X3_2 = torch.nn.Conv2d(24, 24, kernel_size=3, padding=1)

        self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=1)

    def forward(self, x):
        branch1X1 = self.branch1X1(x)

        branch5X5 = self.branch1X1(x)
        branch5X5 = self.branch5X5(branch5X5)

        branch3X3 = self.branch1X1(x)
        branch3X3 = self.branch3X3_1(branch3X3)
        branch3X3 = self.branch3X3_2(branch3X3)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1X1, branch5X5, branch3X3, branch_pool]
        # (b, c, w, h),dim=1——以第一个维度channel来拼接
        return torch.cat(outputs, dim=1)


class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        # # 88 = 24 + 16 + 24 + 24
        self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5)

        self.incep1 = Inception(in_channels=10)
        self.incep2 = Inception(in_channels=20)

        self.pooling = torch.nn.MaxPool2d(2)
        # 1408:我们可以先不定义fc层,并将forward函数中return语句的前两句去掉,通过模型查看尺寸确定后在进行定义
        self.fc = torch.nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0) # x的第0维就是batch_size
        x = F.relu(self.pooling(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.pooling(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0


# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

在这里插入图片描述

Stack layer

在这里插入图片描述

**问题:**为什么网络层次更深反而准确率会下降,训练效果更差?

**梯度消失:**在反向传播时需要根据链式法则把一连串的梯度乘起来,若每个梯度都小于1,则乘起来的结果接近于0,导致权重在更新时没有什么变化。

**解决办法:**逐层训练,每一层加锁,但是深度学习中层数太多难以实现。

ResNet(Residual Network)

残差网络多一个跳连接,在做完卷积激活之前,将该层的输入加上输出一起作为整个的输出来激活。可解决梯度消失的问题。(要求经过两层的输出与输入的x 张量维度必须一样,即通道、高度、维度都必须一样)

在这里插入图片描述

Residual block

在这里插入图片描述

代码实现:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)


# 2、建立模型
class ResidualBlock(torch.nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.channels = channels
        self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)

    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(x)
        return F.relu(x+y)


class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)

        self.pooling = torch.nn.MaxPool2d(2)

        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)

        self.fc = torch.nn.Linear(512, 10)

    def forward(self, x):
        in_size = x.size(0) # x的第0维就是batch_size
        x = self.pooling(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.pooling(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0


# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

在这里插入图片描述

作业:

作业1:阅读论文Identity Mappings in Deep Residual Networks

该论文给出了很多residual block实现的方式。

在这里插入图片描述

实现constant scaling

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)

    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(x)
        z = 0.5 * (x + y)
        return F.relu(z)

实现conv sortcut

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.channels = channels
 
        self.conv1 = nn.Conv2d(channels, channels,
                               kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(channels, channels,
                               kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(channels, channels,
                               kernel_size=1)
 
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(x)
        z = self.conv3(x) + y
        return F.relu(z)

作业2:阅读论文 Densely Connected Convolutional Networks

在这里插入图片描述

建议学习流程

  1. 学习理论知识(《深度学习》花书)
  2. 阅读PyTorch文档(至少通读一遍)
  3. 复现经典之作(先读代码、再自己写代码)
  4. 选特定领域进行研究,融会贯通,扩充视野,广泛阅读
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李闪火

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值