刘二大人 《PyTorch深度学习实践》P10 卷积神经网络(基础篇)

卷积神经网络(基础篇)

基本概念:

  • **全连接网络:**像前几节中的用到的全是用线性层连接起来的网络层,称为全连接层。也就是线性层中的每一个输入结点都会参与下一层任何一个输出节点的计算上,这样的线性层叫做全连接层。如果整个网络都是用这种全连接层连接在一起的,那就称为全连接网络。
  • **卷积神经网络:**需要根据输入的维度映射到对应的输出的维度上。
  • **卷积(Convolution):**包留图像的空间特征(全连接会丧失原有的一些空间信息)。
  • **下采样(Subsampling):**通道数不变,图像的高度和宽度会发生变化,目的就是减少数据量,降低运算需求。
  • **特征提取器(Feature Extraction):**包括卷积和下采样,通过卷积运算,找到某种特征。

在这里插入图片描述

卷积过程:

**单通道:**从1 * 5 * 5 输入中拿出 3 * 3 框与核做卷积(数乘),对应元素相乘求和,得到第一个元素的结果,再将框移动,做相应的运算,以此类推。

在这里插入图片描述

三通道:

在这里插入图片描述
在这里插入图片描述

  • 若需要输出多个输出通道,如需要m个,则就准备m个卷积核。(与输出通道保持一致)
  • 每一个卷积核对原始输入卷积后的结果都是通道为1。
  • 每一个卷积核通道数量要求与输入通道一致

在这里插入图片描述
在这里插入图片描述

import torch
in_channels, out_channels = 5, 10  # n 输入的维度, m 输出的维度
width, height = 100, 100  # 图像大小
kernel_size = 3  # 卷积核的大小
batch_size = 1  # pytorch中输入必须是小批量的数据

# 卷积层对输入的通道数有要求
# 取随机数,随机采样
input = torch.randn(batch_size, in_channels, width, height)
# 卷积对象,torch.nn.Conv2d对由多个输入平面组成的输入信号进行二维卷积
# 三个参数,输入通道,输出通道,卷积核的大小
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)

# 卷积层
output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

输出:

torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])

padding填充:

Output宽度 = Input宽度 - Kernel宽度 + 1

在这里插入图片描述

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)  # B C W H
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
# 不需要偏置量,所以设置为False
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)  # O(定义了几个卷积核) I(卷积核的通道数) W  H
# 卷积层权重的初始化
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

输出:

tensor([[[[ 91., 168., 224., 215., 127.],
          [114., 211., 295., 262., 149.],
          [192., 259., 282., 214., 122.],
          [194., 251., 253., 169.,  86.],
          [ 96., 112., 110.,  68.,  31.]]]], grad_fn=<ConvolutionBackward0>)

stride 步长

stride = 2:步长为2,有效降低图像的W H

在这里插入图片描述

import torch

input = [3,4,6,5,7,
		 2,4,6,8,2,
		 1,6,7,8,4,
		 9,7,4,6,2,
		 3,7,5,4,1]
input = torch.Tensor(input).view(1, 1, 5, 5) # B C W H
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)

kernel = torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1, 1, 3, 3) # O I W H
conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

输出:

tensor([[[[211., 262.],
          [251., 169.]]]], grad_fn=<ConvolutionBackward0>

下采样

通过MaxPooling 最大池化层,默认stride=2
在这里插入图片描述

import torch

input = [3, 4, 6, 5,
         2, 4, 6, 8,
         1, 6, 7, 5,
         9, 7, 4, 6,
         ]
input = torch.Tensor(input).view(1, 1, 4, 4)

maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)  # 默认stride=2

output = maxpooling_layer(input)
print(output)

输出:

tensor([[[[4., 8.],
          [9., 7.]]]])

运算迁移到GPU

  1. 模型迁移到GPU
    在这里插入图片描述

  2. 输入和数据迁移,数据要放在同一块显卡上
    在这里插入图片描述

  3. 测试也迁移一下

在这里插入图片描述

应用在Minist数据集

一个简单的卷积神经网络示例:利用卷积神经网络来处理Minist数据集:

在这里插入图片描述

把全连接网络改成卷积神经网络即可

在这里插入图片描述

代码实现:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)


# 2、建立模型
class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0) # x的第0维就是batch_size
        x = F.relu(self.pooling(self.conv1(x))) # 修正与池化顺序反了但是不影响
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    print("开始训练啦")
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0


# 5、定义测试函数
accuracy = []
def test():
    print("开始测试啦")
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

在这里插入图片描述

作业:都变成三个

在这里插入图片描述

在这里插入图片描述

代码实现:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST(root='dataset/mnist',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='dataset/mnist',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=False)


# 2、建立模型
class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
        self.conv3 = torch.nn.Conv2d(32, 64, kernel_size=3)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc1 = torch.nn.Linear(64, 32)
        self.fc2 = torch.nn.Linear(32, 10)

    def forward(self, x):
        batch_size = x.size(0)  # x的第0维就是batch_size
        x = F.relu(self.pooling(self.conv1(x))) # 修正与池化顺序反了但是不影响
        x = F.relu(self.pooling(self.conv2(x)))
        x = F.relu(self.pooling(self.conv3(x)))
        x = x.view(batch_size, -1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x


model = Net()
# 将模型迁移到GPU上运行,cuda:0表示第0块显卡
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(torch.cuda.is_available())
model.to(device)

# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将要计算的张量也迁移到GPU上——输入和输出
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()

        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0


# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 测试中的张量也迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 两个张量比较,得出的是其中相等的元素的个数(即一个批次中预测正确的个数)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test  set: %d %%' % (100 * correct / total))
    accuracy.append(100 * correct / total)


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("epoch")
    plt.ylabel("Accuracy")
    plt.show()

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
大人PyTorch课程是一门非常有价值的课程。PyTorch是一种开源的机器学习框架,是当前深度学习领域非常流行的工具之一。这门课程由大人亲自授课,拥有丰富的实战经验和深厚的理论功底,对于学习PyTorch和深度学习的同学来说是一个绝佳的选择。 在这门课程中,大人会从基础开始,逐渐介绍PyTorch的各个方面,包括张量操作、自动微分、搭建神经网络等内容。大人讲解的方式深入浅出,通俗易懂,能够让学生快速上手,理解PyTorch的核心概念和使用方法。 另外,这门课程还将涵盖一些实际项目案例,通过实战演练的方式,帮助学生将理论与实践相结合,掌握如何使用PyTorch解决实际问题。大人会分享一些自己在实战项目中遇到的经验和技巧,对于学生们来说是非常宝贵的学习资源。 除了讲授知识,大人还非常注重培养学生的动手能力和解决问题的能力。他会布置一些编程练习和作业,要求学生们按时完成并提交。通过这些练习和作业,学生们可以不断巩固所学知识,提高自己的编程和解决问题的能力。 总之,大人PyTorch课程是一门内容丰富、实用性强,能够帮助学生快速上手PyTorch并解决实际问题的课程。无论是对于初学者还是有一定经验的人来说,都是一个非常值得推荐的学习资源。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李闪火

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值