PyCharm新建项目,配置解释器——基于Conda环境

安装Anaconda

  • Anaconda是Python的一个科学计算发行版,内置了数百个Python经常会使用的库,也包括做机器学习或数据挖掘的库,如Scikit-learn、NumPy、SciPy和Pandas等,其中可能有一些是TensorFlow的依赖库。
  • Anaconda提供了一个编译好的环境可以直接安装。
  • Anaconda自动集成了最新版的MKL(Math Kernel Library)库,加速矩阵运算和线性代数运算。
  • Anaconda:https://www.continuum.io/downloads
  • 国内镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
  • 根据操作系统下载对应版本的64位的Python3.x版。

PyCharm配置

一、新建项目,新建 Conda Enviroment

  • 打开File,新建项目
    在这里插入图片描述
  • 设置项目位置:H:\PycharmProjects\new_progectnew_project 为项目名称;
  • 配置项目解释器:D:\Anaconda3\envs\spider 为新建的虚拟环境位置,spider 为环境名称;
  • Python version 选择的3.7版本,D:\Anaconda3\Scripts\conda.exe 为基于conda执行。
    在这里插入图片描述
  • 新建的虚拟环境在anaconda路径envs之下(D:\Anaconda3\envs\spider),新建成功之后,打开cmd控制台,输入指令 conda info --envs 会显示新建的虚拟环境(类似linux中创建conda虚拟环境)

二、新建项目,配置已经创建的Conda环境

  • 新建项目
    在这里插入图片描述
  • 使用已经创建好的环境
    在这里插入图片描述

三、在已有项目中,新建解释器 Conda Enviroment

  • 打开设置,修改Project。
    在这里插入图片描述
  • 点击最右边的设置按钮,选择Add,之后选择Conda Environment,创建新的环境(也可以选择已经创建好的环境)。
    在这里插入图片描述
  • 创建新环境
    在这里插入图片描述
  • 新建成功之后,打开cmd控制台,输入指令 conda info --envs 会显示新建的虚拟环境(类似linux中创建conda虚拟环境)。
### 如何在 PyCharm 中将 Conda 创建的新环境设置为项目解释器 要在 PyCharm 中将通过 Conda 创建的新环境设置为项目Python 解释器,可以按照以下方式实现: #### 配置步骤概述 1. **创建新的 Conda 虚拟环境** 使用命令行工具(如 Anaconda Prompt 或者 Windows 的 CMD),运行如下命令来创建一个新的虚拟环境[^2]: ```bash conda create -n my_new_env python=3.9 ``` 这里的 `my_new_env` 是自定义的环境名称,而 `python=3.9` 表示该环境中使用的 Python 版本。 2. **激活新创建的 Conda 环境** 在成功创建之后,可以通过以下命令激活刚刚建立好的环境[^4]: ```bash conda activate my_new_env ``` 3. **打开 PyCharm 并进入项目设置界面** 启动 PyCharm,并导航至目标项目或者新建一个项目。随后,在右上角找到当前所用的 Python 解释器图标并点击它,选择 “Add Interpreter...”。 4. **添加 Conda Environment 到 PyCharm** 在弹出窗口中,选择左侧列表中的选项:“Conda Environment”。如果这是第一次配置,则可能需要手动指定路径到 `conda.bat` 文件所在位置(通常位于 `C:\Users\<YourUsername>\Anaconda3\Scripts\conda.bat` 或类似的目录下)。对于某些较新版 PyCharm (例如 2024),这一步尤为重要。 5. **定位具体 Conda 环境下的 Python 可执行文件** 接下来,PyCharm 将会询问具体的 Python 执行程序的位置。此应浏览至类似于下面这样的路径结构以选取对应版本的 Python.exe 文件: ``` C:\Users\<YourUsername>\Anaconda3\envs\my_new_env\python.exe ``` 完成上述选择后确认保存更改即可让该项目关联至此特定 Conda 环境之中[^3]^。 6. **验证配置有效性** 返回到编辑区域测试是否正常工作——尝试安装包或查看已有的库列表,确保一切功能均能正常使用。 --- ### 注意事项 - 如果遇到无法识别 Conda 环境的情况,请检查是否有正确引入 condabin 下面的 conda.bat 文件;另外还需保证系统 PATH 已经包含了必要的 anaconda/bin 和其他子目录链接关系。 - 不同操作系统之间可能存在细微差异,比如 Linux/MacOS 用户应当替换相应的绝对地址形式去寻找对应的二进制脚本和服务端口等资源[^1]. ```python import sys print(sys.executable) ``` 利用以上简单代码片段可以帮助快速判断目前实际调用的是哪个 python 实例及其完整路径信息。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值