logistic回归

算法概述

假设有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合曲线),这个拟合过程就称作回归。

主要思想:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归”一词源于最佳拟合,表示要找到最佳拟合参数集。

优点:计算代价不高,易于理解和实现
缺点:容易欠拟合,分类精度可能不高
适用数据类型:数值型和标称型

一般过程

1.收集数据:采用任意方法收集数据
2.准备数据:由于需要进行距离集散,因此要求数据类型为数值型。另外,结构化数据格式则最佳
3.分析数据:采用任意方法对数据进行分析
4.训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数
5.测试算法:一旦训练步骤完成,分类将会很快
6.使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数据;接着,基于训练好的回归洗漱就可以对这些数据进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作

最佳回归系数的确定
梯度上升法

要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻
梯度算子总是指向函数值增长最快的方向,
梯度算法的迭代公式:
在这里插入图片描述
伪代码:

每个回归系数初始化为1
重复R次
       计算整个数据集的梯度
       使用alpha * gradient更新回归系数的向量
       返回回归系数
梯度上升优化算法
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('G:/python/machinelearninginaction/Ch05/testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append((int(lineArr[2])))
    return dataMat, labelMat
# 定义sigmoid函数
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))
# 梯度上升函数
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)
    labelMat = np.mat(classLabels).transpose()
    m, n = np.shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = np.ones((n, 1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights
画出决策边界
def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat, labelMat = loadDataSet()
    dataArr = np.array(dataMat)
    n = np.shape(dataMat)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1]); ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1]); ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2')
    plt.show()
随机梯度上升算法
def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = np.ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i] * weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值