- 博客(9)
- 收藏
- 关注
原创 BEVFusion(mit)最强环境安装,部署复现
BEVFusion作为一项经典的工作,值得深入探索。然而由于配置环境比较麻烦,耽误了一些时间。经过几次成功配置之后,有了一些总结,在这里记录下来,供大家参考避坑,也方便自己下次查阅。
2023-06-21 16:57:53 13003 120
原创 BEVFormer --- 来自于Deformable DETR
说到BEVFormer就不得不说到Deformable DETR,因为BEVFormer中的deformable attention来自于Deformable DETR,而说到Deformable DETR就不得不说到DETR,因为Deformable DETR中利用transformer完成图像目标检测的思路来自DETR,所以,这篇博客介绍的顺序是DETR→Deformable DETR→BEVFormer。
2023-05-23 16:49:12 1134 1
原创 BEVFusion(mit)
对于关键词传感器融合&BEV,如果放在一起那确实是挺窄的方向,但凡去掉一个关键词,都是一个热门的大方向。所以今天就犯了一个错误,总觉得怕自己学的不够全面,又想看BEV融合,但同时又不想错过各个领域的好方法,于是还emo了一会。首先利用swin-t提取相机的特征,然后利用lss把图像空间的特征转变为BEV空间下的特征,具体做法是先利用估计得到图像的深度,再根据深度得到投射到空间中的伪点云特征。为了避免特征在转变为BEV时产生的误差导致的融合不准确,利用带有残差的卷积BEV编码器来融合特征,补偿失调。
2023-05-23 09:32:17 690 1
原创 BEV下多传感器融合知识准备
说完了融合需要在BEV下进行的必要性,下面继续讲方法,我们只道,对于本来就是3D的点云数据来说,BEV只是一种更低级的表达方式,简答说只需要忽略Z轴上的信息即可,也就是从上向下看点云。BEV无非是一种视角,以往的算法基本上都集中在前视的感知上,但是当需要的传感器多起来之后,再使用前视便浪费了资源,也不方便融合。以CL为例,即把图像数据和点云数据都投射到BEV视角下在进行融合,这样不仅方便融合,提高了数据的利用率,而且还能方便后续的处理,我们知道后续的可通行区域检测、路径规划等都需要在BEV视角下完成。
2023-05-22 19:33:18 328 1
原创 mmdetection3D系列--(2)数据集准备
mmdetection3d支持很多数据集,比如说kitti,NuScenes,waymo,Lyft,S3DIS、ScanNet 和 SUN RGB-D。这里要根据自己的任务去选择相应的数据集,是作2d/3d检测的,还是作分割的,都是不一样的。但是这些数据由于格式和规则的不同,很可能带来麻烦,所以mmdetection准备了一些脚本,来把下载好的数据转换成训练/测试脚本能识别的格式。从而在该数据集上进行后续的工作。
2023-03-04 11:24:20 1272
原创 PointPillars--细说Pillar Feature Net
不同于point和voxel,pillars把处理对象变成了柱子。这里详细介绍了文章里的Pillar Feature Net,也就是柱特征提取模块,也是整篇文章的核心。
2023-03-02 15:30:00 656
原创 VoxelNet--细说VFE
第二篇要说的论文是基于体素的VoxelNet的体素特征编码模块。经过体素化、分组、随机采样处理之后。一帧点云数据被划分成了多个包含若干点云的体素。下面让我们走进一个体素中去。对体素进行特征编码和表示就是这片论文的核心。
2023-02-28 18:00:00 514
原创 PointNet--细说特征提取
这篇文章把点云看做是无序点的集合,而不是有序的体素或柱,基于点云已知的特征利用shared-MLP进行扩充升维,然后再进行Maxpool实现特征汇聚,这样就能获取较多维度的特征来表示整个点云,进而进行后续的工作。
2023-02-26 17:44:50 995
原创 mmdetection3d系列--(1)安装步骤(无坑版)
mmdetecion3d无坑版安装教程。在这里记录一下正确的安装流程,已备再次查阅,也给大家提供一点参考。
2023-02-24 09:18:06 9563 9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人