机器学习笔记
文章平均质量分 93
技术小坤
一个喜欢分享技术和内容的小博主。
展开
-
机器学习笔记十九
回忆上一讲的内容,实际上上一讲的例子就是一个部分可观测MDP的特例。在原LQR问题中有模型st+1=Ast+Bat+wts_{t+1}=As_t+Ba_t+w_tst+1=Ast+Bat+wt,我们改变了条件,假设只能观测到yt=Cst+vty_t=Cs_t+v_tyt=Cst+vt(不能直接观测到状态,只能观测到某些关于状态的函数,并需要根据这些观测值对最优动作作出判断)。在状态完全可观测的情形下,我们可以根据at=Ltsta_t=L_ts_tat=Ltst选择动作;而在部分可观测的例原创 2024-02-07 21:32:39 · 742 阅读 · 1 评论 -
机器学习笔记十八
在继续学习之前,我们先来回顾一下上一讲的内容:其目标是maxaE[R(0)(s0,a0)+R(1)(s1,a1)+⋯+R(T)(sT,aT)]\displaystyle\max_a\mathrm E\left[R^{(0)}(s_0,a_0)+R^{(1)}(s_1,a_1)+\cdots+R^{(T)}(s_T,a_T)\right]amaxE[R(0)(s0,a0)+R(1)(s1,a1)+⋯+R(T)(sT,aT)];之后我们应用了动态规划算法:VT∗(s)=maxaTR(sT,a原创 2024-02-07 21:28:08 · 680 阅读 · 1 评论 -
机器学习笔记十七
首先回顾一下前面关于马尔可夫决策过程的内容。在上一讲中,我们了解了对无限状态MDP的求解,本讲我们将介绍一些做了轻微改动的MDP的变型形式——首先是修改奖励函数RRR,然后是对折扣因子γ\gammaγ的调整。记得在上一讲中,我们提到了无限状态MDP无法直接求解(我们使用了对价值函数的近似来求解);而在本将中,我们将介绍一种特殊的MDP——即使状态空间是连续的(无限状态)依然可以直接对价值函数进行求解。我们要介绍的第一个MDP的变型形式就是状态动作奖励,我们将奖励函数改为R:S,A→RR:S,A\to \ma原创 2024-02-07 21:23:06 · 874 阅读 · 1 评论 -
机器学习笔记十六
式中的期望变成了关于一个确定性分布的期望(在确定性模型中,我们在给定输入下做的每次抽样将得到同样的输出),于是使用一个样本就可以计算相应的期望值了。比如倒置钟摆的例子,我们假设系统的所有参数已知,比如杆的长度、杆的质量等等,根据这些输入参数,使用各种物理定律计算位于。中对状态使用了求和运算,而在这里我们对状态使用的是积分运算,这说明我们现在是在连续状态下(而不是在离散状态下)求解MDP。描述一个连续状态MDP的最简单的方法就是将它的状态空间离散化,然后在对其应用前面介绍的值迭代或策略迭代进行求解。原创 2024-02-07 21:16:24 · 702 阅读 · 1 评论 -
机器学习笔记十五
在监督学习中,算法尝试模仿训练集中的数据,给新的输入�x贴上一个合适的标签�y。在这种情形下,�y会明确的指出每个输入�x所对应的那个“正确的”标签;在无监督学习中,算法尝试发掘数据中潜在的固有结构,使用模型将这种结构表示出来,之后再对数据进行标记,使其存在于某个结构中。原创 2024-02-07 21:11:46 · 532 阅读 · 1 评论 -
机器学习笔记十四
来看另一个例子,在前面([第五讲](https://blog.csdn.net/qq_45791012/article/details/136062495))我们讨论过关于垃圾邮件分类的问题,我们会构造一个词汇表向量,其每个分量所对应的单词如果在邮件中出现则置为$1$,反正则置为$0$。当我们对这种数据应用PCA时,产生的算法换了个名字,叫做**潜在语义索引(LSI: latent semantic analysis)**。不过在LSI中,我们通常跳过预处理阶段,因为正规化数据使它们具有相同的方差可能会大幅原创 2024-02-07 21:09:08 · 1007 阅读 · 1 评论 -
机器学习笔记十三
先来回顾一下上一讲推导出的结论,对于随机变量x=[x1x2], x∼N(μ,Σ)x=\begin{bmatrix}x_1\\x_2\end{bmatrix},\ x\sim\mathcal N(\mu,\varSigma)x=[x1x2], x∼N(μ,Σ),其中μ=[μ1μ2], Σ=[Σ11Σ12Σ21Σ22]\mu=\begin{bmatrix}\mu_1\\\mu_2\end{bmatrix},\ \varSigma=\begin{bmatrix}\varSigma_{11}&\varSigm原创 2024-02-07 21:04:02 · 839 阅读 · 1 评论 -
机器学习笔记十二
上一讲我们介绍了无监督学习算法,现在使用的训练集都是没有类标记的数据集{�(1),⋯,�(�)}{x (1) ,⋯,x (m) }。我们想要对样本进行分类并得到每个类型的样本的的密度分布。于是,我们引入潜在变量�z,用它来表示样本所属的分布,并将数据建模为�(�)=∑��(�∣�)�(�)P(x)= z∑ P(x∣z)P(z)。在前半节课的介绍中,我们假设数据服从不同的高斯分布,并使用高斯混合模型来对样本建模,也就是令�原创 2024-02-07 20:57:43 · 649 阅读 · 1 评论 -
机器学习笔记十一
在聚类问题(clustering problem)中,对于给定的训练集{�(1),⋯,�(�)}{x (1) ,⋯,x (m) },并且希望对样本分组,并找到能够使样本“紧密聚集”在一起的簇(clusters)。这里的�(�)∈��x (i) ∈R n 像原来一样,但是没有�(�)y (i) 。因此,这是一个无监督学习问题。�k-means聚类算法的过程如下:随机的初始化簇质心(cluster centroids)�1原创 2024-02-07 01:12:16 · 831 阅读 · 1 评论 -
机器学习笔记十
与关于�θ的最大似然估计的式子相比,这个式子只是最后多了一项�(�)p(θ)。(对于这个式子的直观理解,参数服从�∼�(0,�2�)θ∼N(0,τ 2 I),这是一个期望为00的高斯分布,具有一定的协方差�2�τ 2 I,对于这样一个分布,大部分的概率质量都集中在00附近。所以这个先验概率的意义就是,多数的参数都应该接近于00,回忆上一讲介绍的特征选择,如果我们剔除某个特征,也就等同于将其值置为00,这是一个与特征选择类似的过程,虽然它不会原创 2024-02-07 01:05:38 · 985 阅读 · 1 评论 -
机器学习笔记九
我们已经证明了一些在有限假设类下非常有用的理论,然而,包括“任意以实数为参数的假设函数”(如线性分类器)在内的很多的假设类实际上包含了无数个假设函数。我们能否将有限假设类下成立的结论推广到无限假设类中呢?我们先抛出一个不严谨的论点,也许在某些方面不够“正确”,但它比较直观。之后,我们会给出一个更好且更普遍的结论。假设我们要将上面关于样本复杂度的式子应用在逻辑回归中,此时我们的假设类是由线性判别边界构成的,所以�H是以�d个实数作为参数(如果我用逻辑回归解决�n个特征值的问题,则�=原创 2024-02-07 00:59:12 · 656 阅读 · 1 评论 -
机器学习笔记九八
本节我们会对学习理论有一个大致了解,除了启发和深入理解机器学习,这部分讨论还将加强我们对学习理论直观概念,也会介绍一些学习算法在不同设置下最佳应用的经验。同时还将尝试解答这几个问题:首先,我们能否形式化偏差与方差间的权衡过程?这个问题也将引出关于模型选择方法的讨论,比如算法自动确定使用几阶多项式进行拟合。其次,在机器学习中我们真正关心的是模型的泛化误差,但是大多数学习算法只对训练集做拟合,那么我们如何从“对训练集有着很好拟合的模型”中得知它的泛化误差?我们尤其想知道,能否将“模型关于训练集的原创 2024-02-07 00:53:22 · 803 阅读 · 1 评论 -
机器学习笔记七
先回顾上一讲的内容:我们写出凸优化问题(假设数据都是线性可分的):minw,b12∥w∥2s.t.y(i)(wTx(i)+b)≥1,i=1,⋯ ,m\begin{align}\displaystyle\operatorname*{min}_{w,b}&\quad\frac{1}{2}\lVert w\rVert^2\\\mathrm{s.t.}&\quad y^{(i)}\left(w^Tx^{(i)}+b\right)\geq 1,\quad i=1,\cdots,m\end{align}w,bmin原创 2024-02-06 21:25:45 · 672 阅读 · 0 评论 -
机器学习笔记五
接着上一讲,进一步讨论朴素贝叶斯算法及事件模型。在结束生成学习算法前,我们再来介绍一种针对文本分类的模型。虽然前面介绍的朴素贝叶斯算法对于很多分类问题都要良好的效果,不过对于文本分类,我们有一种更好的模型。在特定语境的文本分类中,朴素贝叶斯算法使用了多元伯努利事件模型(multi-variate Bernoulli event model)(特征值按照伯努利试验取xi∈{0,1}x_i\in\{0,1\}xi∈{0,1},特征值向量长度为字典长度)。回忆一下上一讲的知识,在这个模型中,我们首先假设下一封邮原创 2024-02-06 21:21:43 · 571 阅读 · 0 评论 -
机器学习笔记四
截至目前,我们主要在讨论关于条件x下y的期望py∣x;θ的学习模型。比如逻辑回归模型py∣x;θ中的假设hθxgθTx,其中g是S型函数。在后面的学习中,我们将介绍一些其他类型的学习算法。考虑这样一种分类问题,我们想要根据一些动物的特征,区分大象(y1)和小狗(y0对于已知的训练集,诸如逻辑回归、感知算法基本上都是尝试找到一条直线,也就是判别边界,以区分大象样本和小狗样本。原创 2024-02-06 21:16:45 · 935 阅读 · 0 评论 -
机器学习笔记三
回到上一讲介绍的逻辑回归:在逻辑回归中,我们用S型函数作为g(z)g(z)g(z),使用梯度上升的更新规则求参数θ\thetaθ的最大似然估计。下面来介绍另一种方法:我们先回忆一下牛顿法找函数值零点:设函数f: R→Rf:\ \mathbb{R}\to\mathbb{R}f: R→R,我们希望找到使f(θ)=0f(\theta)=0f(θ)=0的θ∈R\theta\in\mathbb{R}θ∈R值,牛顿法提供下面的更新规则:θ:=θ−f(θ)f′(θ)\theta:=\theta-\frac{f(\thet原创 2024-02-06 21:17:20 · 698 阅读 · 0 评论 -
机器学习笔记二
我们先来回顾一下上一讲中的内容。=(θ0, ⋯, θn)表示特征值的系数向量;接着用hθ(x(i))h_\theta\left(x^{(i)}\right)hθ(x(i))表示用于拟合训练集中样本的假设函数(假设函数基于参数θ⃗\vec\thetaθ),并定义hθ(x(i))=∑j=0nθjxj(i)=θTxh_\theta\left(x^{(i)}\right)=\displaystyle\sum_{j=0}^n\theta_jx_j^{(i)}=\theta^Txhθ(x(i))=j=0∑n原创 2024-02-06 09:10:30 · 614 阅读 · 0 评论 -
机器学习笔记一
监督学习问题描述:通过给定的训练集,训练一个函数ℎ: X→Y,如果ℎ(x)能够通过较为准确的预测而得到结果y,则我们称这个ℎ(x)是“好的”。因为一些历史原因,函数ℎ被称为假设。当预测的目标变量是连续的(就像我们公寓租金的例子一样),就说这是一个线性回归问题。当y只能取几个有特征的值(例如已知房间面积大小,我们需要判断这是一栋房屋还是一套公寓)时,我们称其为分类问题。原创 2024-02-05 23:36:29 · 834 阅读 · 1 评论