之前写的那篇是直接用了clip-vit-large-patch14,今天这里主要是使用CLIP模型来实现的,所以在运行代码之前请安装好CLIP。
代码主要的一些过程:
首先加载模型和预处理器,然后从文件夹中读取图片和文本,然后对图片和文本进行编码,然后来计算CLIP分数:计算图像和文本特征向量之间的点积,得到的结果就是两个特征向量之间的余弦相似度,也就是CLIP分数。
Text-Image:
import os
import numpy as np
import torch
import clip
from PIL import Image
from tqdm import tqdm
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.cuda.set_device(7)
# 加载模型、数据处理器
model, preprocess = clip.load("ViT-B/32", device=device)
model.eval()
# model, preprocess = clip.load("ViT-L/14", device=device)
def get_all_folders(folder_path):
# 获取文件夹中的所有文件和文件夹
all_files = os.listdir(folder_path)
# 过滤所有的文件夹
folder_files = [file for file in all_files if os.path.isdir(os.path.join(folder_path, file))]
# 将文件夹的路径添加到一个列表中
folder_paths = [os.path.join(folder_path, folder_file) for folder_file in folder_files]
# 返回列表
return folder_paths
def get_all_images(folder_path):
# 获取文件夹中的所有文件和文件夹
all_files = os.listdir(folder_path)
# 过滤所有的图片文件
image_files = [file for file in all_files if file.endswith((".jpg", ".png", ".jpeg"))]
# 将图片文件的路径添加到一个列表中
image_paths = [os.path.join(folder_path, image_file) for image_file in image_files]
# 返回列表
return image_paths
def get_clip_score(image_path, text):
# 打开图片并进行预处理
image = preprocess(Image.open(image_path)).unsqueeze(0).to(device)
# print(f"Image shape: {image.shape}")
# 对文本进行编码
text = clip.tokenize([text]).to(device)
with torch.no_grad():
# 对图片进行编码
image_features = model.encode_image(image)
# 对文本进行编码
text_features = model.encode_text(text)
# 对特征向量进行归一化处理
image_features = image_features.cpu().numpy()
text_features = text_features.cpu().numpy()
# 对图片和文本的特征向量进行L2范数归一化。这样做的目的是使得每个特征向量的长度为1,
image_features = image_features / np.sqrt(np.sum(image_features ** 2, axis=1, keepdims=True))
text_features = text_features / np.sqrt(np.sum(text_features ** 2, axis=1, keepdims=True))
# 计算图像和文本特征向量之间的点积,得到的结果就是两个特征向量之间的余弦相似度。
similarity = image_features @ text_features.T
# 计算相似度的平均值,得到CLIP分数。
clip_score = np.mean(similarity)
return clip_score # 返回CLIP分数
def calculate_clip_scores_for_all_categories(images_folder_path, text_prompts):
# 获取所有的类别文件夹
category_folders = get_all_folders(images_folder_path)
# 初始化一个字典来存储每个类别的 Clip Score
category_clip_scores = {}
# 初始化一个字典来存储每个类别的平均值
category_mean_scores = {}
# 遍历每个类别文件夹
for category_folder, text_prompt in tqdm(zip(category_folders, text_prompts),total=len(category_folders),desc="Processing categories"):
# 获取类别名称
category_name = os.path.basename(category_folder)
# 获取该类别下的所有图片
images_path = get_all_images(category_folder)
# 计算该类别的 Clip Score
clip_scores = [get_clip_score(image_path, text_prompt) for image_path in images_path]
# 将 Clip Score 存储在字典中
category_clip_scores[category_name] = clip_scores
# 计算平均值
mean_score = np.mean(clip_scores)
# 将平均值存储在字典中
category_mean_scores[category_name] = mean_score
return category_clip_scores,category_mean_scores
# 从文件中获取文本提示
def read_prompts_from_file(file_path):
with open(file_path, 'r') as file:
prompts = file.readlines()
# 去除每行末尾的换行符
prompts = [prompt.strip() for prompt in prompts]
return prompts
# 使用函数读取文本提示
text_prompts = read_prompts_from_file('./texts/prompts.txt')
# 计算所有类别的 Clip Score 和平均值
category_clip_scores, category_mean_scores = calculate_clip_scores_for_all_categories("./samples_images", text_prompts)
# 打印结果
for category, clip_score in category_clip_scores.items():
for score in clip_score:
print(f"Category: {category}, Clip Score: {score:.4f}")
for category, mean_score in category_mean_scores.items():
print(f"Category: {category}, Mean Score: {mean_score:.4f}")
Image-Image
import os
import numpy as np
import torch
import clip
from PIL import Image
from tqdm import tqdm
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.cuda.set_device(7)
# 加载模型、数据处理器
model, preprocess = clip.load("ViT-B/32", device=device)
model.eval()
# model, preprocess = clip.load("ViT-L/14", device=device)
def get_all_folders(folder_path):
# 获取文件夹中的所有文件和文件夹
all_files = os.listdir(folder_path)
# 过滤所有的文件夹
folder_files = [file for file in all_files if os.path.isdir(os.path.join(folder_path, file))]
# 将文件夹的路径添加到一个列表中
folder_paths = [os.path.join(folder_path, folder_file) for folder_file in folder_files]
# 返回列表
return folder_paths
def get_all_images(folder_path):
# 获取文件夹中的所有文件和文件夹
all_files = os.listdir(folder_path)
# 过滤所有的图片文件
image_files = [file for file in all_files if file.endswith((".jpg", ".png", ".jpeg"))]
# 将图片文件的路径添加到一个列表中
image_paths = [os.path.join(folder_path, image_file) for image_file in image_files]
# 返回列表
return image_paths
def get_clip_score_between_images(image_path1, image_path2):
# 打开第一张图片并进行预处理
image1 = preprocess(Image.open(image_path1)).unsqueeze(0).to(device)
# 打开第二张图片并进行预处理
image2 = preprocess(Image.open(image_path2)).unsqueeze(0).to(device)
with torch.no_grad():
# 对第一张图片进行编码
image_features1 = model.encode_image(image1)
# 对第二张图片进行编码
image_features2 = model.encode_image(image2)
# 对特征向量进行归一化处理
image_features1 = image_features1.cpu().numpy()
image_features2 = image_features2.cpu().numpy()
image_features1 = image_features1 / np.sqrt(np.sum(image_features1 ** 2, axis=1, keepdims=True))
image_features2 = image_features2 / np.sqrt(np.sum(image_features2 ** 2, axis=1, keepdims=True))
# 计算两个图像特征向量之间的点积,得到的结果就是两个特征向量之间的余弦相似度。
similarity = image_features1 @ image_features2.T
# 计算相似度的平均值,得到CLIP分数。
clip_score = np.mean(similarity)
return clip_score # 返回CLIP分数
def calculate_clip_scores_for_all_categories(images_folder_path1, images_folder_path2):
# 获取所有的类别文件夹
category_folders1 = get_all_folders(images_folder_path1)
category_folders2 = get_all_folders(images_folder_path2)
# 初始化一个字典来存储每个类别的 Clip Score
category_clip_scores = {}
# 初始化一个字典来存储每个类别的平均值
category_mean_scores = {}
# 遍历每个类别文件夹
for category_folder1 in tqdm(category_folders1, total=len(category_folders1), desc="Processing categories"):
# 获取类别名称
category_name = os.path.basename(category_folder1)
# 获取该类别下的所有图片
images_path1 = get_all_images(category_folder1)
images_path2 = get_all_images(images_folder_path2) # 获取文件夹2中的所有图片
# 计算该类别的 Clip Score
clip_scores = []
for image_path1 in images_path1:
image_scores = [get_clip_score_between_images(image_path1, image_path2) for image_path2 in images_path2]
clip_scores.append(np.mean(image_scores)) # 对每张图片与文件夹2中所有图片的CLIP分数取平均值
# 将 Clip Score 存储在字典中
category_clip_scores[category_name] = clip_scores
# 计算平均值
mean_score = np.mean(clip_scores)
# 将平均值存储在字典中
category_mean_scores[category_name] = mean_score
return category_clip_scores, category_mean_scores
# 计算所有类别的 Clip Score 和平均值
category_clip_scores, category_mean_scores = calculate_clip_scores_for_all_categories("./samples_images", "./regulation_images/bird")
# 打印结果
for category, clip_score in category_clip_scores.items():
for score in clip_score:
print(f"Category: {category}, Clip Score: {score:.4f}")
# print(f"Category: {category}, Clip Score: {clip_score.item():.4f}")
for category, mean_score in category_mean_scores.items():
print(f"Category: {category}, Mean Score: {mean_score:.4f}")
# print(f"Category: {category}, Mean Score: {mean_score.item():.4f}")
为了方便理解代码,附上我的目录: