文生图模型
【全文参考这位up主:https://space.bilibili.com/510348890,讲得非常详细清除】
Inception score:越大越好
arxiv:https://arxiv.org/abs/1801.01973
Inception score:衡量生成图像的质量,通过计算生成图像的条件概率分布和边缘概率分布之间的KL散度。
Inception score 就是用inception v3模型输出一个分类概率分布,维度为1000,因为用的image数据集,一共1000个分类。
上公式:(懒得打了,看图片吧)
- exp: 没有具体含义。
- x~Pg :表示从生成器中生图片。
- p(y|x) :把生成的图片 x 输入到 Inception V3,得到一个1000 维的向量 y ,也就是该图片属于各个类别的概率分布。表示的是图像的质量情况,分布越尖越好,因为他反应的是生成的图片属于某一个的概率,这个概率越高,就代表他生成的越准确。即对于清晰的生成图片,这个向量的某个维度值格外大,而其余的维度值格外小(也就是概率密度图十分尖)。
- p(y) :N个生成的图片(N 通常取 5000),每个生成图片都输入到 Inception V3中,各自得到一个自己的概率分布向量,把这些向量求一个平均,代表是一个平均概率分布,代表的是一个生成器生成的多样性。他越平越好。
KL散度:度量两个概率分布之家你都差异程度,当KL散度越大,代表差异越大。我们想要的就是差异越大越好,因为一个平一个尖,越大越好。KL散度公式: