原题链接:CSP 202104-5 疫苗运输
参考大佬博客:CSP:疫苗运输
csp 2021-04-05 疫苗运输
做是做不出来的,纯学习大佬代码,练练思维
#include <bits/stdc++.h>
using namespace std;
#define ll long long
int n,m;
#define x first
#define y second
typedef pair<int,int> PII;
const int N=510;
const ll INF=0x3f3f3f3f3f3f3f3fll;
struct node
{
int cid;//线路号
int sum;//当前点在线路cid上距离起点的距离
int pid;//当前点在线路cid上的编号
};
ll len[N];//线路i的长度
vector<node> ps[N];//线路i上经过编号为j的点上的线路
vector<PII> line[N];//line[i][j]={ver,y} 线路i上编号为j的站点号为ver的点到下一个站点的距离为y
bool st[N];//dijkstra中的判重数组
int pid[N];// pid[i] = j : 线路i上最早拿到疫苗的点的编号为j
ll dist[N];//dist[i] :线路i最早拿到疫苗的时间
ll ans[N];//站点i最早拿到疫苗的时间
ll exgcd(ll a,ll b,ll& x,ll& y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
return r;
}
void dijkstra()
{
memset(dist,0x3f,sizeof dist);
for(int i=0;i<m;i++)
{
int d=0;
for(int j=0;j<line[i].size();j++)
{
if(line[i][j].x==1)
{
dist[i]=d;
pid[i]=j;
break;
}
d+=line[i][j].y;
}
}
for(int i=0;i<m;++i)
{
int t=-1;
for(int j=0;j<m;++j)
{
if(!st[j] && (t==-1 || dist[j]<dist[t]))
{
t=j;
}
}
st[t]=true;
vector<PII>& l=line[t];// l为线路t
ll d=dist[t];// 线路t最早拿到疫苗的时间
//遍历线路t上的点
for(int j=pid[t],k=0;k<l.size();j=(j+1)%l.size(),++k)
{
//对于线路t上的第j点的
for(auto& c : ps[l[j].x])
{
if(st[c.cid] ) continue;
ll a=d,b=len[t];
ll x=c.sum,y=len[c.cid];
ll X,Y;
ll D=exgcd(b,y,X,Y);
if((x-a)%D)
continue;// 不满足扩展欧几里得算法的条件 不能同时到达交点
X=(x-a)/D*X;
y/=D;
X=(X%y+y)%y;
if(dist[c.cid]>a+b*X)
{
dist[c.cid]=a+b*X;
pid[c.cid]=c.pid;
}
}
d+=l[j].y;
}
}
}
int main()
{
std::ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=0;i<m;++i)
{
int cnt;
cin>>cnt;
int sum=0;
for(int j=0;j<cnt;j++)
{
int ver,t;
cin>>ver>>t;// 站点号,到下一站的时间
ps[ver].push_back({i,sum,j});
line[i].push_back({ver,t});
sum+=t;
}
len[i]=sum;
}
dijkstra();
memset(ans,0x3f,sizeof ans);
for(int i=0;i<m;++i)
{
if(dist[i]==INF)
continue;
ll d=dist[i];
for(int j=pid[i],k=0;k<line[i].size();j=(j+1)%line[i].size(),++k)
{
int ver=line[i][j].x;
ans[ver]=min(ans[ver],d);
d+=line[i][j].y;
}
}
for(int i=2;i<=n;++i)
{
if(ans[i]==INF)
cout<<"inf"<<endl;
else
cout<<ans[i]<<endl;
}
return 0;
}