在此记录完整代码,以后有空也许会讲解
import numpy as np
import torch.nn
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F # use Relu
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(), # Convert a PIL Image to tensor
transforms.Normalize((0.1307,),(0.3081,)) # MINST's mean and std
])
train_dataset = datasets.MNIST(root='../dataset/mnist',
train=True,
transform=transform,
download=True)
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_dataset = datasets.MNIST(root='../dataset/mnist',
train=False,
transform=transform,
download=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(784,512)
self.l2 = torch.nn.Linear(512,256)
self.l3 = torch.nn.Linear(256,128)
self.l4 = torch.nn.Linear(128,64)
self.l5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.
for batch_idx, data in enumerate(train_loader, 0):
inputs,target = data
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item() # 取item()以免构建计算图
if batch_idx % 300 == 299:
print('[%d,%5d] loss: %.3f' % (epoch+1,batch_idx+1,running_loss/300))
def test():
correct = 0
total = 0
with torch.no_grad(): # do not calculate gradient
for data in test_loader:
images,labels = data
outputs = model(images)
_,predicted = torch.max(outputs.data,dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100*correct/total))
for epoch in range(10):
train(epoch)
test()