pytorch多分类问题(b站up 刘二大人)

在此记录完整代码,以后有空也许会讲解

import numpy as np
import torch.nn
from torchvision import transforms,datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F  # use Relu
import torch.optim as optim

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),  # Convert a PIL Image to tensor
    transforms.Normalize((0.1307,),(0.3081,))  # MINST's mean and std
])

train_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=True,
                               transform=transform,
                               download=True)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True)

test_dataset = datasets.MNIST(root='../dataset/mnist',
                               train=False,
                               transform=transform,
                               download=True)
test_loader = DataLoader(dataset=test_dataset,
                          batch_size=batch_size,
                          shuffle=False)

class Net(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.l1 = torch.nn.Linear(784,512)
        self.l2 = torch.nn.Linear(512,256)
        self.l3 = torch.nn.Linear(256,128)
        self.l4 = torch.nn.Linear(128,64)
        self.l5 = torch.nn.Linear(64,10)

    def forward(self,x):
        x = x.view(-1,784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)


model = Net()

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01, momentum=0.5)

def train(epoch):
    running_loss = 0.
    for batch_idx, data in enumerate(train_loader, 0):
        inputs,target = data
        optimizer.zero_grad()

        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs,target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()  # 取item()以免构建计算图
        if batch_idx % 300 == 299:
            print('[%d,%5d] loss: %.3f' % (epoch+1,batch_idx+1,running_loss/300))

def test():
    correct = 0
    total = 0
    with torch.no_grad():  # do not calculate gradient
        for data in test_loader:
            images,labels = data
            outputs = model(images)
            _,predicted = torch.max(outputs.data,dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100*correct/total))

for epoch in range(10):
    train(epoch)
    test()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值