逻辑回归 单特征 多特征 Softmax多特征多分类

逻辑回归

  • 估计概率公式
    在这里插入图片描述
  • 逻辑函数(数值->逻辑值)
    在这里插入图片描述
  • 逻辑回归模型预测
    在这里插入图片描述
    在这里插入图片描述

当概率越靠近1,则-log(t) 越靠近0,当p越靠近0,-log(t)则越大
在这里插入图片描述

  • 逻辑回归成本函数(对数损失)
    在这里插入图片描述
    偏导
    在这里插入图片描述
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt

单特征

iris = datasets.load_iris()
print(iris["data"][0])
X=iris["data"][:,3:] #petal width 花瓣宽度,选择每行的第四个(每行共四个)
#[:,3:] 前面选择行范围  后面选择列范围
print(X[0])
y=(iris["target"]==2).astype(np.int)#标签,数组元素为2则元素为1,否则为0

#训练一个逻辑回归模型
from sklearn.linear_model import LogisticRegression
log_reg=LogisticRegression()#创建实例
log_reg.fit(X,y)


X_new = np.linspace(0, 3, 1000).reshape(-1, 1)#生成0 - 3 的等差数列,数列有1000个元素

y_proba = log_reg.predict_proba(X_new)#得出预测概率数组
plt.plot(X_new, y_proba[:, 1], "g-", label="Iris virginica")#是的概率
plt.plot(X_new, y_proba[:, 0], "b--", label="Not Iris virginica")#不是的概率

#使用模型进行预测
print( "predict:",log_reg.predict([[1.7], [1.5]]))
plt.show()

在这里插入图片描述

多特征(二分类)

#使用花两个数据,花的长度与宽度
X = iris["data"][:, (2, 3)] 
y = (iris["target"] == 2).astype(np.int)
log_reg = LogisticRegression(solver="lbfgs", C=10**10, random_state=42)
#控制Scikit-Learn LogisticRegression模型的正则化强度的超参数不是alpha(与其他
#线性模型一样),而是反值C。C值越高,对模型的正则化越少。
log_reg.fit(X, y)
#生成随机测试集
x0, x1 = np.meshgrid(
        np.linspace(2.9, 7, 500).reshape(-1, 1),#长度
        np.linspace(0.8, 2.7, 200).reshape(-1, 1),#宽度
)
#.ravel多维数组转一维
X_new = np.c_[x0.ravel(), x1.ravel()]
y_proba = log_reg.predict(X)
print(y_proba)

Softmax回归(多特征多分类)

X = iris["data"][:, (2, 3)]  # 两种特征长度宽度
y = iris["target"] 

softmax_reg = LogisticRegression(multi_class="multinomial",solver="lbfgs", C=10, random_state=42)
softmax_reg.fit(X, y)

x0, x1 = np.meshgrid(
        np.linspace(0, 8, 500).reshape(-1, 1),
        np.linspace(0, 3.5, 200).reshape(-1, 1),
    )
X_new = np.c_[x0.ravel(), x1.ravel()]


y_proba = softmax_reg.predict_proba(X_new)
print(y_proba)
y_predict = softmax_reg.predict(X_new)
print(y_predict)


#下面为画图
'''
zz1 = y_proba[:, 1].reshape(x0.shape)
zz = y_predict.reshape(x0.shape)

plt.figure(figsize=(10, 4))
plt.plot(X[y==2, 0], X[y==2, 1], "g^", label="Iris virginica")
plt.plot(X[y==1, 0], X[y==1, 1], "bs", label="Iris versicolor")
plt.plot(X[y==0, 0], X[y==0, 1], "yo", label="Iris setosa")

from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])

plt.contourf(x0, x1, zz, cmap=custom_cmap)
contour = plt.contour(x0, x1, zz1, cmap=plt.cm.brg)
plt.clabel(contour, inline=1, fontsize=12)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="center left", fontsize=14)
plt.axis([0, 7, 0, 3.5])
plt.show()'''

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高万禄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值