Fitting 3 folds for each of 1 candidates, totalling 3 fits
Traceback (most recent call last):
File "c:\Users\FILWYZ\Desktop\新建 文本文档 (2).py", line 165, in <module>
opt.fit(X_train, y_train)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\skopt\searchcv.py", line 542, in fit
super().fit(X=X, y=y, groups=groups, **fit_params)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\base.py", line 1363, in wrapper
return fit_method(estimator, *args, **kwargs)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\model_selection\_search.py", line 1051, in fit
self._run_search(evaluate_candidates)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\skopt\searchcv.py", line 599, in _run_search
optim_result, score_name = self._step(
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\skopt\searchcv.py", line 453, in _step
all_results = evaluate_candidates(params_dict)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\model_selection\_search.py", line 997, in evaluate_candidates
out = parallel(
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\utils\parallel.py", line 82, in __call__
return super().__call__(iterable_with_config_and_warning_filters)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\joblib\parallel.py", line 1986, in __call__
return output if self.return_generator else list(output)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\joblib\parallel.py", line 1914, in _get_sequential_output
res = func(*args, **kwargs)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\utils\parallel.py", line 147, in __call__
return self.function(*args, **kwargs)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\model_selection\_validation.py", line 859, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\mlxtend\regressor\stacking_cv_regression.py", line 215, in fit
[
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\mlxtend\regressor\stacking_cv_regression.py", line 216, in <listcomp>
cross_val_predict(
File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\utils\_param_validation.py", line 196, in wrapper
params = func_sig.bind(*args, **kwargs)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\inspect.py", line 3186, in bind
return self._bind(args, kwargs)
File "C:\Users\FILWYZ\.conda\envs\MM\lib\inspect.py", line 3175, in _bind
raise TypeError(
TypeError: got an unexpected keyword argument 'fit_params'