Scikit-learn使用和扩展之mlxtend(Stacking...)


mlxtend(Machine Learning Extensions)是一个Python库,它为Scikit-learn提供了额外的实用工具和扩展功能。mlxtend旨在为数据科学家和机器学习工程师提供一系列易于使用的高级API,以便于实现一些复杂的机器学习算法和技术,这些在标准的Scikit-learn库中可能没有直接提供。

mlxtend的主要特点和功能

  • Feature Selection: 提供了多种特征选择算法,如基于顺序前进选择(Sequential Forward Selection)、顺序后退消除(Sequential Backward Elimination)等。
  • Ensemble Methods: 包括了如Stacking、Blending等集成学习方法,帮助用户构建更强大的集成模型。
  • Model Evaluation: 提供了如Bootstrap、Permutation Test等模型评估工具,用于更全面地评估模型性能。
  • Classification and Regression Algorithms: 实现了一些经典的学习算法,如Adaline、Perceptron等,以及一些更现代的算法,如Regularized Evolutionary Algorithms for Hyperparameter Optimization。
  • Deep Learning
Fitting 3 folds for each of 1 candidates, totalling 3 fits Traceback (most recent call last): File "c:\Users\FILWYZ\Desktop\新建 文本文档 (2).py", line 165, in <module> opt.fit(X_train, y_train) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\skopt\searchcv.py", line 542, in fit super().fit(X=X, y=y, groups=groups, **fit_params) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\base.py", line 1363, in wrapper return fit_method(estimator, *args, **kwargs) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\model_selection\_search.py", line 1051, in fit self._run_search(evaluate_candidates) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\skopt\searchcv.py", line 599, in _run_search optim_result, score_name = self._step( File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\skopt\searchcv.py", line 453, in _step all_results = evaluate_candidates(params_dict) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\model_selection\_search.py", line 997, in evaluate_candidates out = parallel( File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\utils\parallel.py", line 82, in __call__ return super().__call__(iterable_with_config_and_warning_filters) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\joblib\parallel.py", line 1986, in __call__ return output if self.return_generator else list(output) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\joblib\parallel.py", line 1914, in _get_sequential_output res = func(*args, **kwargs) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\utils\parallel.py", line 147, in __call__ return self.function(*args, **kwargs) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\model_selection\_validation.py", line 859, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\mlxtend\regressor\stacking_cv_regression.py", line 215, in fit [ File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\mlxtend\regressor\stacking_cv_regression.py", line 216, in <listcomp> cross_val_predict( File "C:\Users\FILWYZ\.conda\envs\MM\lib\site-packages\sklearn\utils\_param_validation.py", line 196, in wrapper params = func_sig.bind(*args, **kwargs) File "C:\Users\FILWYZ\.conda\envs\MM\lib\inspect.py", line 3186, in bind return self._bind(args, kwargs) File "C:\Users\FILWYZ\.conda\envs\MM\lib\inspect.py", line 3175, in _bind raise TypeError( TypeError: got an unexpected keyword argument 'fit_params'
07-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

galaxy‘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值