拉普拉斯变换定义

拉普拉斯变换定义

拉氏变换

定义

拉普拉斯变换是将函数f(t)从时域变换到复频域的积分变换,变换结果记为F(s)

L [ f ( t ) ] = F ( s ) = ∫ 0 − ∞ f ( t ) e − s t d t \color{red}\mathcal{L}[f(t)]=F(s)=\int_{0^-}^\infty f(t)e^{-st}dt L[f(t)]=F(s)=0f(t)estdt

s是一个复数变量

s   =   σ   +   j ω {s~=~\sigma~+~j\omega} s = σ + 

  • 下限0ˉ表示时间刚好在t=0时刻之前,包含起始条件
  • 对于普通函数f(t),下限可以用0代替

拉普拉斯变换对

函数f(t)和F(s)被视为一组拉普拉斯变换对:

f ( t ) ⇔ F ( s ) f(t)\quad\Leftrightarrow\quad F(s) f(t)F(s)

  • f(t)和F(s)之间是一一对应的

拉普拉斯反变换

定义

与拉普拉斯正变换相对应的拉普拉斯反变换表示为:

L − 1 [ F ( s ) ] = f ( t ) = 1 2 π j ∫ σ 1 − j ∞ σ 1 + j ∞ F ( s ) e s t d s \mathcal{L}^{-1}[F(s)]=f(t)=\frac1{2\left.\pi j\right.}\int_{\sigma_1-j\infty}^{\sigma_1+j\infty}F(s)e^{st}ds L1[F(s)]=f(t)=2πj1σ1jσ1+jF(s)estds

  • 通常采用查表法求拉普拉斯反变换

重要函数拉氏变换

拉氏变换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

单位阶跃

L [ u ( t ) ] = ∫ 0 − ∞ 1 e − s t d t = − 1 s e − s t ∣ 0 ∞ = − 1 s ( 0 ) + 1 s ( 1 ) = 1 s \color{red}L\Bigl[u(t)\Bigr]=\int_{0^{-}}^{\infty}1\mathrm{e}^{-st}\mathrm{d}t=-\left.\frac{1}{s}\mathrm{e}^{-st}\Bigr|_{0}^{\infty}=-\frac{1}{s}(0)+\frac{1}{s}(1)=\frac{1}{s}\right. L[u(t)]=01estdt=s1est 0=s1(0)+s1(1)=s1

指数函数

L [ e − a t u ( t ) ] = ∫ 0 − ∞ e − a t e − s t d t = − 1 s + a e − ( s + a ) t ∣ 0 ∞ = 1 s + a \color{red}L\Bigl[\mathrm{e}^{-at}u\left(t\right)\Bigr]=\int_{0^{-}}^{\infty}\mathrm{e}^{-at}\mathrm{e}^{-st}\mathrm{d}t=-\left.\frac{1}{s+a}\mathrm{e}^{-\left(s+a\right)t}\Bigr|_{0}^{\infty}=\frac{1}{s+a}\right. L[eatu(t)]=0eatestdt=s+a1e(s+a)t 0=s+a1

单位冲击函数

L [ δ ( t ) ] = ∫ 0 − ∞ δ ( t ) e − s t d t = e − 0 = 1 \color{red}L\bigl[\delta(t)\bigr]=\int_{0^{-}}^{\infty}\delta(t)\mathrm{e}^{-st}\mathrm{d}t=\mathrm{e}^{-0}=1 L[δ(t)]=0δ(t)estdt=e0=1

求拉普拉斯变换

计算拉普拉斯变换

  • 求f(t)=sinω(t)的拉普拉斯变换

正弦函数的拉普拉斯变换为:

F ( s ) = L [ sin ⁡ ω t ] = ∫ 0 ∞ ( sin ⁡ ω t ) e − s t d t = ∫ 0 ∞ ( e j ω t − e − j ω t 2 j ) e − s t d t F(s)=\mathcal{L}[\sin\omega t]=\int_0^\infty(\sin\omega t)e^{-st}dt=\int_0^\infty\left(\frac{e^{j\omega t}-e^{-j\omega t}}{2j}\right)e^{-st}dt F(s)=L[sinωt]=0(sinωt)estdt=0(2jetet)estdt

= 1 2 j ∫ 0 ∞ ( e − ( s − j ω ) t − e − ( s + j ω ) t ) d t =\frac1{2j}\int_0^\infty{(e^{-(s-j\omega)t}-e^{-(s+j\omega)t})}dt =2j10(e(s)te(s+)t)dt

= 1 2 j ( 1 s − j ω − 1 s + j ω ) = ω s 2 + ω 2 =\frac1{2j}{\left(\frac1{s-j\omega}-\frac1{s+j\omega}\right)}=\frac\omega{s^2+\omega^2} =2j1(s1s+1)=s2+ω2ω

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值