我们来看看多维输入(Multiple Dimension Input),我们先看看多维Logistic回归模型:
假设我们有一个8维的输入,于是就可以改变我们的Logistic回归模型。
运用相关矩阵的知识我们便可以分析出Z矩阵的相关维度,并且b矩阵可以运用广播机制来参与相关的运算。
相关代码如下:
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = torch.nn.Linear(8, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear(x))
return x
model = Model()
我们可以看看上式中8*1维向量的来源。但是在实际应用中,我们不会直接把一个高维的向量直接经过一层网络就直接输出,于是我们就可以用以下的方式:
我们还是用我们上文中说过的四个步骤来完成我们的模型
首先第一步:准备数据集
接下来设计相关的模型:
再接下来我们设计损失函数以及构造器:
最后就是训练我们的模型:
下面为完整代码:
import numpy as np
import torch
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1])
y_data = torch.from_numpy(xy[:, [-1]])
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(100):
# Forward
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
# Backward
optimizer.zero_grad()
loss.backward()
# Update
optimizer.step()
以下为一些常见的激活函数: