《人工智能导论》第二章:智能Agent(笔记一)

一.Agent和环境

  1. Agent通过传感器感知环境并通过执行器对所处环境产生影响 。机器人Agent可以通过摄像头,红外测距仪作为传感器,各种马达作为执行器。软件Agent接受键盘敲击,文件内容和网路数据包作为传感器输入,并以屏幕显示,写文件和发送网络数据包为执行器来作用于环境。
  2. Agent的感知序列:是该Agent所收到的所有输入数据的完整历史
  3. Agent函数:描述Agent的行为,它将任意给定感知序列映射为行动
    (1)人造Agent的Agent函数通过Agent程序实现,Agent程序是具体实现

二.好的行为:理性的概念

 理性是使期望的性能最大化
  1. 理性Agent:理性Agent是做事正确的Agent,即对于每一可能的感知数据序列,一个理性的Agent应该采取一个行为以达到最大的性能
  2. 理性的判断:
    在这里插入图片描述
    (1)性能度量:一个客观的标准来评价Agent的行为的成功性
    3.理性agent能够进行信息收集,理性的agent应该具有自主性,能够进行学习

三.环境的性质

  1. 任务环境:包括性能度量,环境,Agent的执行器和传感器,英文缩写为PEAS.(设计Agent时,第一步就是尽可能完整地详细说明任务环境)
  2. 例子:
    (1)自动驾驶出租车:
    在这里插入图片描述
    (2)挑拣零件机器人:
    在这里插入图片描述
    (3)交互式英语教学者:
    在这里插入图片描述
  3. 环境的性质决定了Agent的设计,也决定了实现Agent的主要技术群体的实用性。
  4. 任务环境分类:
    (1)分类一:完全可观察的 vs.部分可观察的
    如果Agent根本没有传感器,环境则是无法观察的 在这里插入图片描述(2)分类二单agent vs.多agent在这里插入图片描述
    (3)分类三确定的 vs.随机的
    如果环境的下一个状态完全取决于当前状态和Agent执行的动作,则环境是确定的。否则,它是随机的。我们说环境不确定是指它不是完全可观察的或不确定的
    (4)分类四片段式的 vs. 延续式的
    片段式:Agent的经历被分成一个个原子片段,在每个片段中Agent感知信息并完成单个行动,下一个片段不依赖于以前的片段.
    延续式:在延续环境中,当前决策会影响到所有未来的决策
    (5)分类五静态的 vs. 动态的
    如果环境在Agent计算的时候会变化,则该Agent环境是动态的;否则为静态
    半动态的:环境本身不变化但Agent的性能评价随时间变化
    (6)分类六离散的 vs.连续的
    环境的状态,时间的处理方式以及Agent的感知信息和行动都有离散/连续之分
    (7)分类七已知的 vs.未知的
    Agent的知识状态

最难处理的状态: 部分可观察的,随机的,连续的,动态的,延续式的,多agent的

四.Agent的结构

  1. AI的任务是设计Agent程序,它实现的是把感知信息映射到行动的Agent函数
  2. 体系结构:具备物理传感器和执行器的计算装置。
  3. Agent=体系结构+程序
  4. Agent程序
    (1)以传感器得到的当前感知信息为输入
    (2)以执行器的行动为输出
    注意:Agent程序以当前感知为输入,而Agent函数是以整个感知历史作为输入的。如果Agent的行为要依赖于整个感知序列,那么该Agent必须要记住感知信息。
  5. Agent的表驱动方法的缺点
    (1)表太大
    (2)创建表时间长
    (3)非自主性,需人工填写
    (4)即使能够学习,也需要很长的时间
  6. 四种基本的Agent程序
    (1)简单反射Agent:基于当前的感知选择行动,不关注感知历史
    在这里插入图片描述

(2)基于模型的反射Agent: Agent根据感知历史维持内部状态,Agent随时更新内部状态信息
在这里插入图片描述

(3)基于目标的Agent:除了根据感知信息之外,还要根据目标信息来选择行动,但效率比较低,需要推理。
在这里插入图片描述

(4)基于效用的Agent:当达到目标的行为有很多种的时候,需要考虑效率。环境是部分可观察的和随机的,不确定下的决策过程可以通过基于效用的agent来实现。
在这里插入图片描述

  1. 学习Agent可被划分为4个组件
    (1)性能元件:相当于整个agent
    (2)评判元件:反映性能元件做得如何
    (3)学习元件:负责改进提高
    (4)问题产生器:提出一些新的有建设性的探索尝试
    在这里插入图片描述
  2. Agent的基本特性
    (1) 自治性(Autonomy ) :
    Agent能根据外界环境的变化,而自动地对自己的行为和状态进行调整,而不是仅仅被动地接受外界的刺激,具有自我管理自我调节的能力。
    (2) 反应性(Reactive):
    能对外界的刺激作出反应的能力
    (3) 主动性(Proactive):
    对于外界环境的改变,Agent能主动采取活动的能力。
    (4) 社会性(Social ) :
    Agent具有与其它Agent或人进行合作的能力,不同的Agent可根据各自的意图与其它Agent进行交互,以达到解决问题的目的。
    (5) 进化性:
    Agent能积累或学习经验和知识,并修改自己的行为以适应新环境
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

焦妮敲代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值