数据结构 | 第七章 | 图

Chapter 7 图

  • 是什么:由顶点的有穷非空集合和顶点之间边的集合组成曾。G(V,E),V(Vertex),E(Edge).

图的定义

各种图定义
  • 无向边:顶点之间的边没有方向,无序偶对(vi,vj)。无向图:任意两顶点之间的边都是无向边。
    有向边:顶点之间的边有方向,则称这条边为有向边,也称为弧。有序偶<vi,vj>, vi称为弧尾,vj称为弧头。有向图:任意两个顶点之间的边都是有向边。
  • 简单图:不存在顶点到自身的边,且同一条边不重复出现。
  • 无向完全图:任意两个顶点之间都存在边。含n个顶点的无向完全图有[n*(n-1)]/2条边。
  • 有向完全图:任意两个顶点之间都存在方向互为相反的两条弧。含n个顶点的有向完全图有n*(n-1)条边。
  • 有很少边或弧的图称为稀疏图,反之称为稠密图
  • 网:带权图。
  • 子图:假设两个图G=(V,{E}),G’=(V’,{E’}),如果V’包含于V 且 E’包含于E,则称G’为G的子图。
图的顶点与边间关系
  • 无向图顶点v的是和v相关联的边的数目,记为TD。边数是个顶点度数和的一半在这里插入图片描述
  • 有向图,以顶点v为头的弧的数目称为v的入度,记为ID(v);以v为尾的弧的数目称为v的出度OD(v),记为OD(v),顶点v的度TD(v)=ID(v)+OD(v)。
    在这里插入图片描述
  • 路径:一个顶点序列。简单路径:序列中顶点不重复出现的路径。路径长度:路径上的边或弧的数目。
  • 回路(或环):第一个顶点和最后一个顶点相同的路。简单回路:除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路。
连通图相关术语
  • 连通图:无向图中任意两个顶点都是联通的。连通分量:无向图中的极大连通子图
  • 强连通图:有向图中对每一对vi、vj都存在路径。强连通分量:有向图中的极大强连通子图。
  • 连通图的生成树:一个极小的连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从这里也可以知道:如果一个图有n个顶点且小于n-1条边,则是非连通图;如果多于n-1条边,必定构成一个环。但有n-1条边的并不一定是生成树。
  • 有向树:如果一个有向图恰有一个顶点的入度为0,其余顶点的入度均为1,则是一棵有向树。
  • 有向图的生成森林:由若干棵有向树组成,含图中全部顶点,但只有足以构成若干棵不相交的有向树的弧。
图的定义与术语总结
  • 按有无方向分为有向图无向图。无向图由顶点构成,有向图由顶点构成。弧有弧头弧尾之分。
  • 图按照边或弧的多少分为稀疏图稠密图。如果两个顶点之间都存在边的叫完全图,有向的叫有向完全图。若无重复的边或顶点到自身的边则叫简单图
  • 图中顶点之间有邻接点依附的概念。无向图顶点的边数叫做,有向图顶点分为入度出度
  • 图上的边或弧带上权称为
  • 图中顶点间存在路径, 两顶点存在路径则说明是连通的,如果路径最终回到起始点则称为,当中不重复叫简单路径。若任意两顶点都是连通的,则图就是连通图。有向则称强连通图。图中有子图,若子图极大连通则就是连通分量,有向的则称强连通分量
  • 无向图中连通且n个顶点n-1条边叫生成树。有向图中一顶点入度为0其余顶点入度为1的叫有向树。一个有向图由若干棵有向树构成生成森林

图的抽象数据类型

ADT 图(Graph)
Data 
    顶点的有穷非空集合和边的集合。
Operation 
    CreateGraph(*G,V,VR): 按照顶点集V和边弧集VR的定义构造图G。
    DestoryGraph(*G):图G存在则销毁。
    LocateVex(G,u): 若图G中存在顶点u,则返回图中的位置。
    GetVex(G,v): 若图G中存在顶点u,则返回图中的位置。
    PutVex(G,v,value): 将图G中顶点v赋值value。
    FirstAdjVex(G,*v): 返回顶点v的一个邻接顶点,若顶点在G中无邻接顶点返回空。
    NextAdjVex(G,v,*w): 返回顶点v相对于顶点w的下一个邻接顶点,若w是v的最后
                        一个邻接点则返回“空”。
    InsertVex(*G,v): 在图G中增添新顶点v。
    DeleteVex(*G,V): 删除图G中顶点v及其相关的弧。
    InsertArc(*G,v,w): 在图G中增添弧<v,w>,若G是无向图,还需要增添对称弧<w,v>DeleteArc(*G,v,w): 在图G中删除弧<v,w>,若G是无向图,则还删除对称弧<w,v>DFSTraverse(G): 对图G中进行深度有限遍历,在遍历过程中对每个顶点调用。
    HFSTraverse(G): 对图G中进行广度优先遍历,在遍历过程中对每个顶点调用。
endADT

图的存储结构

  • 图不可能用简单的顺序存储结构来表示。而多重链表的方式,即以一个数据域和多个指针域组成的结点表示图中的一个顶点,尽管可以实现,但如果各个顶点度数相差很大,会造成浪费。
邻接矩阵
  • 用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。设图G有n个顶点,则邻接矩阵是一个n*n的方阵,有边对应位置为1,否则为0。
  • 无向图邻接矩阵的特点:主对角线为0、对称矩阵、行或列中1的个数是对应顶点的度、邻接点就是扫描对应行,为1的就是邻接点。
  • 有向图邻接矩阵的特点:主对角线为0、不对称、出度是行之和、入度是列之和、邻接点仍是扫描行。
  • 带权图的邻接矩阵:初始化为INFINITY,对角线为0,其余为权。
/*邻接矩阵的存储结构*/
typedef char VertexType;   /*定点类型由用户定义*/
typedef int EdgeType;      /*边上的权值类型由用户定义*/  
#define MAXVEX 100
#define INFINITY 65535    
typedef struct
{
    VertexType ves[MAXVEX];         /*顶点表*/
    EdgeType arc[MAXVEX][MAXVEX];   /*邻接矩阵,可看作边表*/
    int numVertexes, numEdges;      /*图中的定点数和边数*/
}MGraph;
/*建立无向网图的邻接矩阵表示,时间复杂度O(n+n^2+e)*/
void CreateMGraph(MGraph *G)
{
    int i,j,k,w;
    printf("输入顶点和边数:\n");
    scanf("%d%d",&G->numVertexes,&G->numEdges);  /*输入顶点数和边数*/
    for(i=0;i<G->numVertexes;i++)   /*读入顶点信息,建立顶点表*/
        scanf(&G->vexs[i]);
    for(i=0;i<G->numVertexes;i++)
        for(j=0;j<G->numVertexes;j++)
            G->arc[i][j]=INFINITY;
    for(k=0;k<G->numEdges;k++)  /*读入numEdges条边,建立邻接矩阵*/
    {
        printf("输入边(vi,vj)上的下标i,下标j和权w:\n");
        scanf("%d,%d,%d",&i,&j,&w);
        G->arc[i][j]=w;
        G->arc[j][i]=G->arc[i][j]; /*因为是无向图,矩阵对称*/
    }
}
邻接表
  • 为什么:邻接矩阵对稀疏图较浪费。
  • 是什么:数组与链表相结合的存储方法。顶点用一个一维数组存储,每个元素还需要存储指向第一个邻接点的指针,以便于查找该顶点的边信息。每个顶点的所有邻接点构成一个线性表,由于个数不定,用单链表存储。无向图称为顶点的边表,有向图则称为顶点作为弧尾的出边表。
    在这里插入图片描述
    adjves是邻接点域,存储某顶点的邻接点在顶点表中的下标。
  • 有向图有方向,以顶点为弧尾存储边表,很容易得到出度。若为了便于确定顶点入度,可以对每个顶点建立一个以弧头存储的边表,叫逆邻接表
    在这里插入图片描述
  • 对于带权值的图,可以在边表节点定义中再增加一个weight的数据域存储权值信息。
    在这里插入图片描述
typedef char VertexType;   /*定点类型由用户定义*/
typedef int EdgeType;      /*边上的权值类型由用户定义*/  

typedef struct EdgeNode    /*边表结点*/
{
    int adjvex;            /*邻接点域,存储该顶点对应的下标*/
    EdgeType weight;       /*用于存储权值,对于非网图可以不需要*/
    struct EdgeNode *next; /*链域,指向下一个邻接点*/
}EdgeNode;

typedef struct VertexNode  /*顶点表结点*/
{
    VertexType data;       /*顶点域,存储顶点信息*/
    EdgeNode *firstedge;   /*边表头指针*/
}VertexNode,AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    int numVertexes, numEdges; /*图中当前顶点数和边数*/
}GraphAdjList;
/*无向图邻接表的创建,时间复杂度O(n+e)*/
void CreateALGraph(GraphAdjList *G)
{
    int i,j,k;
    EdgeNode *e;
    printf("输入顶点数和边数:\n");
    scanf("%d,%d",&G->numVertexes,&G->numEdges);
    for(i=0;i<G->numVertexes;i++) /*建立顶点表*/
    {
        scanf(&G->adjList[i].data);
        G->adjList[i].firstedge=NULL;
    }
    for(k=0;k<G->numEdges;k++) /*建立边表*/ 
    {
        printf("输入边(vi,vj)上的顶点序号:\n");
        scanf("%d,%d",&i,&j);
        /*用头插法插入结点。一条边对应两个顶点,
        所以在循环中,一次就针对i和j分别进行了插入*/
        e=(EdgeNode*)malloc(sizeof(EdgeNode));

        e->adjvex=j;
        e->next=G->adjList[i].firstedge;
        G->adjList[i].firstedge=e;

        e=(EdgeNode*)malloc(sizeof(EdgeNode));

        e->adjvex=i;
        e->next=G->adjList[i].firstedge;
        G->adjList[j].firstedge=e;
    }
}
十字链表
  • 为什么:对于有向图来说,邻接表有缺陷,入度出度没法同时保证。
  • 是什么:组合邻接表与逆邻接表。创建复杂度和邻接表是相同的。
    重新定义顶点表结点结构:
    在这里插入图片描述
    firstin表示入边表的右指针,指向该顶点的入边表中第一个结点。
    firstout表示出边表头指针,指向该顶点的出边表中的第一个结点。
    重新定义的边表结点结构:
    在这里插入图片描述
    tailvex指弧起点在顶点表中的下标,headvex是指弧终点在顶点表中的下标,headlink是指入边表指针域,指向终点相同的下一条边,taillink是指边表指针域,指向起点相同的下一条边。如果是网,还可以增加一个weight域来存储权值。
    在这里插入图片描述
邻接多重表
  • 为什么:邻接表对无向图的边的操作比较麻烦,若要删除边需要对邻接表结构中右边表的阴影两个结点进行删除操作。
  • 是什么:
    重新定义边表结点结构:
    在这里插入图片描述
    ivex和jvex是某条边依附的两个顶点在顶点表中的下标。ilink指向依附顶点ivex的下一条边,jlink指向依附顶点jvex的下一条边。
    在这里插入图片描述
    ilink指向的结点的jvex一定要和它本身的ivex的值相同。连线⑦就是指(v1,v0)这条边,它是相当于顶点v1指向(v1,v2)边后的下一条。
  • 邻接表与多重邻接表的差别,仅仅在于同一条边在邻接表中用两个结点表示,而在邻接多重表中只有一个结点。若要删除(v0,v2)这条边,只需要将⑥⑨的链接指向改为^就可。
边集数组
  • 由两个一维数组组成。一个存储顶点的信息;另一个存储边的信息,这个边数组每个数组元素由一条边的起点下标(begin)、终点下标(end)和权(weight)组成。
    在这里插入图片描述

图的遍历

  • 是什么:从某一顶点除法访遍图中其余顶点,且是每一个顶点仅被访问一次。
深度优先遍历(DFS)
  • 是什么:从图中某个顶点v出发,访问此顶点,然后从v的未被访问的邻接点除法深度优先遍历图,直到图中所有和v有路径相通的顶点都被访问到。 一个递归过程,像一棵树的前序遍历。
    对于非连通图,只需要对它的连通分量分别进行深度优先遍历。即在先前一个顶点进行一次深度优先遍历后,若图中尚有顶点仍未访问,则另选图中一个未曾被访问的顶点作为起始点,重复上述过程,直至图中所有顶点都被访问到为止。
typedef int Boolean;
Boolean visited[MAXVEX];
/*邻接矩阵的深度优先递归算法*/
void DFS(MGraph G,int i)
{
    int j;
    visited[i]=TRUE;
    printf("%c",G.vexs[i]);
    for(j=0;j<G.numVertexes;j++)
        if(G.arc[i][j]==1 && !visited[j])
            DFS(G,j);
}
/*邻接矩阵的深度遍历操作*/
void DFSTraverse(MGraph G)
{
    int i;
    for(i=0;i<G.numVertexes;i++)
        visited[i]=FALSE;
    for(i=0;i<G.numVertexes;i++)
        if(!visited[i])
            DFS(G,i);
}
typedef int Boolean;
Boolean visited[MAXVEX];

/*邻接表的深度优先递归算法*/
void DFS(GraphAdjList GL,int i)
{
    EdgeNode *p;
    visited[i]=TRUE;
    printf("%c",GL->adjList[i].data);
    p=GL->adjList[i].firstedge;
    while(p)
    {
        if(!visited[p->adjvex])
            DFS(GL,p->adjvex);
        p=p->next;
    }
}
/*邻接表的深度遍历操作*/
void DFSTraverse(GraphAdjList GL)
{
    int i;
    for(i=0;i<GL.numVertexes;i++)
        visited[i]=FALSE;
    for(i=0;i<GL->numVertexes;i++)
        if(!visited[i])
            DFS(GL,i);
}
广度优先遍历(BFS)
  • 是什么:类似于树的层序遍历。又称广度优先搜索。
    在这里插入图片描述

/*邻接矩阵的广度遍历算法*/
void BFSTraverse(MGraph G)
{
    int i,j;
    Queue Q;
    for(i=0;i<G.numVertexes;i++)
        visited[i]=FALSE;
    InitQueue(&Q);
    for(i=0;i<G.numVertexes;i++)
    {
        if(!visited[i])
        {
            visited[i]=TRUE;
            printf("%c",G.vexs[i]);
            EnQueue(&Q,i);
            while(!QueueEmpty(Q))
            {
                DeQueue(&Q,&i);
                for(j=0;j<G.numVertexes;j++)
                {
                    /*判断其他顶点若与当前顶点存在便且未访问过*/
                    if(G.arc[i][j]==1 && !visited[i])
                    {
                        visited[j]=TRUE;
                        printf("%c",G.vexs[j]);
                        EnQueue(&Q,j);      /*将找到的此顶点入队列*/
                    }
                }
            }
        }
    }
}
/*邻接表的广度遍历算法*/
void BFSTraverse(GraphAdjList GL)
{
    int i;
    EdgeNode *p;
    Queue Q;
    for(i=0;i<GL.numVertexes;i++)
        visited[i]=FALSE;
    InitQueue(&Q);
    for(i=0;i<GL.numVertexes;i++)
    {
        if(!visited[i])
        {
            visited[i]=TRUE;
            printf("%c",GL.adjList[i].data);
            EnQueue(&Q,i);
            while(!QueueEmpty(Q))
            {
                DeQueue(&Q,&i);
                p=GL.adjList[i].firstedge; /*找到当前顶点边表链表头指针*/
                while(p)
                {
                    if(!visited[p->adjvex])    /*若此顶点未被访问*/
                    {
                        visited[p->adjvex]=TRUE;
                        printf("%c",GL.adjList[p->adjvex].data);
                        EnQueue(&Q,p->adjvex); /*将此顶点入队列*/
                    }
                    p=p->next;                 /*指针指向下一个邻接点*/
                }
            }
        }
    }
}
  • 如果只是单纯遍历,DFS和BFS差不多,如果是查找,那么深度优先更适合目标比较明确,以找到目标为主要目的的情况,而广度优先更适合在不断扩大遍历范围时找到相对最优解的情况。

最小生成树

普里姆(Prim)算法
  • 针对存储结构为邻接矩阵的图。
/*邻接矩阵的存储结构*/
typedef char VertexType;   /*定点类型由用户定义*/
typedef int EdgeType;      /*边上的权值类型由用户定义*/  
#define MAXVEX 100
#define INFINITY 65535    
typedef struct
{
    VertexType ves[MAXVEX];         /*顶点表*/
    EdgeType arc[MAXVEX][MAXVEX];   /*邻接矩阵,可看作边表*/
    int numVertexes, numEdges;      /*图中的定点数和边数*/
}MGraph;

/*Prim算法生成最小生成树(加点法)*/
/*由算法代码中的循环嵌套可得时间复杂度为O(n^2)*/
void MiniSpanTree_Prim(MGraph G)
{
    int min,i,j,k;
    int adjvex[MAXVEX];    /*保存相关定点下标*/
    int lowcost[MAXVEX];   /*保存相关顶点间边的权值*/
    lowcost[0]=0;          /*初始化第一个权值为0,即v0加入生成树*/
            /*lowcost的值为0,在这里就是此下标的顶点已经加入生成树*/
    adjvex[0]=0;           /*初始化第一个顶点下标为0*/
    for(i=1;i<G.numVertexes;i++)
    {
        lowcost[i]=G.arc[0][i]; /*将v0顶点与之有边的权值存入数组*/
        adjvex[i]=0;            /*初始化都为v0的下标*/
    }
    for(i=1;i<G.numVertexes;i++)
    {
        min=INFINITY;            
        j=1;k=0;
        while(j<G.numVertexes)    /*循环全部结点*/
        {
            if(lowcost[j]!=0 && lowcost[j]<min)
            {/*如果权值不为0且权值小于min*/
                min=lowcost[j];   /*则让当前权值成为最小值*/
                k=j;              /*将当前最小值的下标存入k*/
            }
            j++;
        }
        printf("(%d,%d)",adjvex[k],k);/*打印当前顶点边中权值最小边*/
        lowcost[k]=0; /*将当前顶点的权值设置为0,表示此顶点已经完成任务*/
        for(j=1;j<G.numVertexes;j++)    /*循环所有顶点*/
        {
            if(lowcost[j]!=0 && G.arc[k][j]<lowcost[j])
            {/*若下标为k顶点各边权值小于此前这些顶点为被加入生成树权值*/
                lowcost[j]=G.arc[k][j];  /*将较小权值存入lowcost*/
                adjvex[j]=k;       /*将下标为k的顶点存入adjvex*/
            }
        }
    }
}
克鲁斯卡尔(Kruskal)算法
  • 针对边集数组
/*对边集数组Edge结构的定义*/
typedef struct
{
    int begin;
    int end;
    int weight;
}Edge;
/*将邻接矩阵通过程序转换为边集数组,并且对它们的权值从小到大排序*/

/*Kruskal算法生成最小生成树*/
/*此算法的Find函数由边数e决定,时间复杂度为O(loge),而外面有
  一个for循环e次,所以克鲁斯卡尔算法的时间复杂为O(eloge)*/
void MiniSpanTree_Kruskal(MGraph G) 
{
    int i,n,m;
    Edge edges[MAXEDGE];   /*定义边集数组*/
    int parent[MAXVEX];    /*定义一数组用来判断边与边是否形成环路*/
    /*此处省略将邻接矩阵G转化为边集数组edges并按权由小到大排序的代码*/
    for(i=1;i<G.numVertexes;i++)
        parent[i]=0;    /*初始化数组为0*/
    for(i=0;i<G.numEdges;i++) /*循环每一条边*/
    {
        n=Find(parent,edges[i].begin);
        m=Find(parent,edges[i].end);
        if(n!=m)   /*假如n与m不等,说明此边没有与现有生成树形成环路*/
        {
            parent[n]=m;  /*将此边的结尾顶点放入下标为起点的parent中*/
                          /*表示此顶点已经在生成树集合中*/                            
            printf("(%d,%d) %d",edges[i].begin,edges[i].end,edges[i].weight);
        }
    }
}

int Find(int *parent,int f) /*查找连线顶点的尾部下标*/
{
    while(parent[f]>0)
        f=parent[f];
    return f;
}

最短路径

迪杰斯特拉(Dijkstra)算法
#define MAXVEX 9 
#define INFINITY 65535 
typedef int Patharc[MAXVEX];        /*用于存储最短路径下标的数组*/
typedef int ShortPathTable[MAXVEX]; /*用于存储到个点最短路径的权值和*/
/*Dijkstra算法,求有向网G的v0顶点到其余顶点v最短路径P[v]及带权长度D[v]*/
/*P[v]的值为前驱顶点下标,D[v]表示v0到v的最短路径长度和*/
/*解决了从某个源点到其余各顶点的最短路径问题,时间复杂度为O(n)*/
/*如果想求任一顶点到其余所有顶点的最短路径,就要对每个顶点当作远点运行
  一次迪杰斯拉特算法,整个算法的时间复杂度变为O(n^3)*/
void ShortestPath_Dijkstra(MGraph G,int v0,Patharc *P,ShortPathTable *D)
{
    int v,w,k,min;
    int final[MAXVEX]; /*final[w]=1表示求得顶点v0至vw的最短路径*/
    for(v=0;v<G.numVertexes;v++)     /*初始化数据*/
    {
        final[v]=0;           /*全部顶点初始化为未知最短路径状态*/
        (*D)[v]=G.arc[v0][v]; /*将与v0顶点有连线的顶点加上权值*/
        (*P)[v]=0;            /*初始化路径数组P为0*/
    }
    (*D)[v0]=0;               /*v0至v0的路径为0*/
    final[v0]=1;              /*v0至v0不需要求路径*/
    /*开始主循环,每次求得v0到某个v顶点的最短路径*/
    for(v=1;v<G.numVertexes;v++)
    {
        min=INFINITY;        /*当前所知离v0顶点的最近距离*/
        for(w=0;w<G.numVertexes;w++)/*寻找离v0最近的顶点*/
        {
            if(!final[w] && (*D)[w]<min)
            {
                k=w;
                ming=(*D)[w]; /*w顶点离v0顶点更近*/
            }
        }
        final[k]=1;         /*将目前找到的最近的顶点置为1*/
        for(w=0;w<G.numVertexes;w++)/*修正当前最短路径及距离*/
        {
            /*如果经过v顶点的路径比现在这条路径的长度短的话*/
            if(!final[w] && (min+G.arc[k][w]<(*D)[w]))
            {/*说明找到了更短的路径,修改D[w]和P[w]*/
                (*D)[w]=min+G.arc[k][w];
                (*P)[w]=k;
            }
        }
    }
}
弗洛伊德(Floyd)算法
typedef int Pathmatrix[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
/*Floyd算法,求网图G中各顶点v到其余顶点w最短路径P[v][w]及带权长度D[v][w],O(n^3)*/

void ShortestPath_Floyd(MGraph G,int v0,Patharc *P,ShortPathTable *D)
{
    int v,w,k;
    for(v=0;v<G.numVertexes;++v)        /*初始化D与P*/
    {
        for(w=0;w<G.numVertexes;++w)
        {
            (*D)[v][w]=G.matrix[v][w];  /*D[v][w]值即为对应点间的权值*/
            (*P)[v][w]=w;               /*初始化P*/
        }
    }
    for(k=0;l<G.numVertexes;++k)
    {
        for(v=0;v<G.numVertexes;++v)
        {
            for(w=0;w<G.numVertexes;++w)
            {
                if((*D)[v][w]>(*D)[v][k]+(*D)[k][w])
                {/*如果经过下标k定点路径比原两点间路径更短*/
                 /*将当前两点间权值设为更小的一个*/
                    (*D)[v][w]=(*D)[v][k]+(*D)[k][w];
                    (*P)[v][w]=(*P)[v][k]; /*路径设置经过下标为k的顶点*/
                }
            }
        }
    }
}
  • 求最短路径的显示代码可以这样写
for(v=0;v<G.numVertexes;v++)
{
    for(w=v+1;w<G.numVertexes;w++)
    {
        printf("v%d-v%d weight: %d",v,w,D[v][w]);
        k=P[v][w];              /*获得第一个路径顶点下标*/
        printf(" path: %d",v);  /*打印源点*/
        while(k!=w)             /*如果路径顶点下标不是终点*/
        {
            printf("-> %d",k);  /*打印路径顶点*/
            k=P[k][w];          /*获得下一个路径顶点下标*/
        }
        printf(" -> %d\n",w);   /*打印终点*/
    }
    printf("\n");     
}

拓扑排序

  • 是什么:有向图中,若从顶点vi到vj有一条路径,则在顶点序列中点点vi必须在vj之前,这样的顶点序列为一个拓扑序列拓扑排序就是对一个有向图构造拓扑序列的过程。
  • 干什么:在一个表示工程的有向图中,顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称为AOV网。如果此网的全部顶点都被输出,则说明它是不存在回路的AOV网。一个不存在回路的AOV网,我们可以将它应用在各种各样的工程或项目的流程图中。
  • 拓扑排序算法:从AOV网中选择一个入度为0的顶点输出,然后删去此顶点,并删除以此顶点为尾的弧,继续重复此步骤,直到输出全部顶点或者AOV中不存在入度为0的顶点为止。
  • 这个图所需要使用的数据结构:由于要删除顶点,用邻接表会更加方便。考虑道算法过程中始终要查找入度为0的顶点,我们在原来顶点表结点结构中,增加一个入度域in。
    在这里插入图片描述
typedef int Status;
#define MAXEDGE 50
  


typedef struct EdgeNode    /*边表结点*/
{
    int adjvex;            /*邻接点域,存储该顶点对应的下标*/
    int weight;            /*用于存储权值,对于非网图可以不需要*/
    struct EdgeNode *next; /*链域,指向下一个邻接点*/
}EdgeNode;

typedef struct VertexNode  /*顶点表结点*/
{
    int in;                /*顶点入度*/
    int data;              /*顶点域,存储顶点信息*/
    EdgeNode *firstedge;   /*边表头指针*/
}VertexNode,AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    int numVertexes, numEdges; /*图中当前顶点数和边数*/
}GraphAdjList,*GraphAdjList;

/*还需要栈,来存储处理过程中入度为0的顶点,为了避免每个
  查找时都要区遍历顶点表找有没有入度为0的顶点*/



/*拓扑排序,若GL无回路,则输出拓扑排序序列并返回OK,若有回路返回ERROR*/
Status TopologicalSort(GraphAdjList GL)
{
    EdgeNode *e;
    int i,k,gettop;
    int top=0;      /*用于栈指针下标*/
    int count=0;    /*用于统计输出顶点的个数*/
    int *stack;     /*建栈存储入度为0的顶点*/
    stack=(int *)malloc(GL->numVertexes*sizeof(int));
    for(i=0;i<GL->numVertexes;i++)
        if(GL->adjList[i].in == 0)
            stack[++top]=i;  /*将入度为0的顶点入栈*/
    while(top!=0)
    {
        gettop=stack[top--]; /*出栈*/ 
        printf("%d ->",GL->adjList[gettop].data); /*打印此顶点*/
        count++;
        for(e=GL->adjList[gettop].firstedge;e;e=e->next)
        {/*对此顶点弧表遍历*/
            k=e->adjvex;
            if(!(--GL->adjList[k].in)) /*将k号顶点邻接点的入度减1*/
                stack[++top]=k;  /*若为0则入栈,以便于下次循环输出*/
        }
    }
    if(count <GL->numVertexes)   /*如果count小于定点数,说明存在环*/
        return ERROR;
    else 
        return OK;
}

关键路径

  • 是什么:从源点到汇点具有最大长度的路径。
  • 干什么:AOE网是要建立在活动之间制约关系没有矛盾的基础上,再来分析整个完整工程至少需要多少时间,或者为缩短完成工程所需时间,应当加快哪些活动等问题。AOE网是用有向图的边表示活动的网。
  • 关键路径算法原理: 只需找到所有活动的最早开始时间和最晚开始时间,并且比较它们,如果相等就意味着此活动是关键活动,活动间的路径为关键路径。如果不等,则就不是。
  • 因此,定义参数:
    ①事件的最早发生时间etv(earliest time of vertex)。
    ②事件的最晚发生时间ltv(latest time of vertex)。
    ③活动的最早开工时间ete(earliest time of edge)。
    ④活动的最晚开工时间lte(lastest time of edge)。
    我们可以根据1、2求得3、4,然后再根据ete[k]和lte[k]是否相等来判断弧ak是否是关键路径。
  • 将AOE网转化为邻接表,弧链表增加weight域,用来存储弧的权值。
  • 求事件的最早发生时间etv的过程,就是问哦们从头至尾找拓扑序列的过程,因此,在求关键路径之前,需要先调用一次拓扑序列算法的代码来计算etv和拓扑序列列表。
typedef struct EdgeNode    /*边表结点*/
{
    int adjvex;            /*邻接点域,存储该顶点对应的下标*/
    int weight;            /*用于存储权值,对于非网图可以不需要*/
    struct EdgeNode *next; /*链域,指向下一个邻接点*/
}EdgeNode;

typedef struct VertexNode  /*顶点表结点*/
{
    int in;                /*顶点入度*/
    int data;              /*顶点域,存储顶点信息*/
    EdgeNode *firstedge;   /*边表头指针*/
}VertexNode,AdjList[MAXVEX];

typedef struct
{
    AdjList adjList;
    int numVertexes, numEdges; /*图中当前顶点数和边数*/
}GraphAdjList,*GraphAdjList;

/*声明几个全局变量*/
int *etv,*ltv;    /*事件最早发生时间和最迟发生时间数组*/
int *stack2;      /*用于存储拓扑序列的栈*/
int top2;         /*用于stack2的指针*/

/*改进过的求拓扑序列算法*/
Status TopologicalSort(GraphAdjList GL)
{
    EdgeNode *e;
    int i,k,gettop;
    int top=0;      /*用于栈指针下标*/
    int count=0;    /*用于统计输出顶点的个数*/
    int *stack;     /*建栈存储入度为0的顶点*/
    stack=(int *)malloc(GL->numVertexes*sizeof(int));
    for(i=0;i<GL->numVertexes;i++)
        if(GL->adjList[i].in == 0)
            stack[++top]=i;  /*将入度为0的顶点入栈*/
    
    top2=0;         /*初始化为0*/
    etv=(int *)malloc(GL->numVertexes*sizeof(int));
    for(i=0;i<GL->numVertexes;i++)
        etv[i]=0;   /*初始化为0*/
    stack2=(int *)malloc(GL->numVertexes*sizeof(int));

    while(top!=0)
    {
        gettop=stack[top--]; /*出栈*/ 
        printf("%d ->",GL->adjList[gettop].data); /*打印此顶点*/
        count++;
        stack2[++top2]=gettop;  /*将弹出的顶点序号压入拓扑序列的栈*/

        for(e=GL->adjList[gettop].firstedge;e;e=e->next)
        {/*对此顶点弧表遍历*/
            k=e->adjvex;
            if(!(--GL->adjList[k].in)) /*将k号顶点邻接点的入度减1*/
                stack[++top]=k;  /*若为0则入栈,以便于下次循环输出*/
            if((etv[gettop]+e->weight)>etv[k]) /*求各顶点时间最早发生时间值*/
                etv[k]=etv[gettop]+e->weight;
        }
    }
    if(count <GL->numVertexes)   /*如果count小于定点数,说明存在环*/
        return ERROR;
    else 
        return OK;
}

/*求关键路径,GL为有向网,输出GL的各项关键活动*/
void CriticalPath(GraphAdjList GL)
{
    EdgeNode *e;
    int i,gettop,k,j;
    int ete,lte;    /*声明活动最早发生时间和最迟发生时间变量*/
    TopologicalSort(GL);  /*求拓扑序列,计算数组etv和stack2的值*/
    ltv=(int *)malloc(GL->numVertexes*sizeof(int)); /*事件最晚发生时间*/
    for(i=0;i<GL->numVertexes;i++)
        ltv[i]=etv[GL->numVertexes-1]; /*初始化ltv*/
    while (top2!=0)             /*计算ltv*/
    {
        gettop=stack2[top2--];  /*将拓扑序列出栈,后进先出*/
        for(e=GL->adjList[gettop].firstedge;e;e=e->next)
        {/*求各顶点时间的最迟发生时间ltv值*/
            k=e->adjvex;
            if(ltv[k]-e->weight<ltv[gettop]) /*求各定点事件最晚发生时间ltv*/
               ltv[gettop]=ltv[k]-e->weight; 
        }
    }
    for(j=0;j<GL->numVertexes;j++)
    {
        for(e= GL->adjList[j].firstedge;e;e=e->next)
        {
            k=e->adjvex;
            ete=etv[j];
            lte=ltv[k]-e->weight;
            if(ete==lte)
                printf("<v%d,v%d> length:%d,",
                GL->adjList[j].data,GL->adjList[k].data,e->weight);
        }
    }   
}

总结

  • 各种定义
  • 存储结构一共五种。十字链表是针对有向邻接图邻接表结构的优化,邻接多重表是针对无向图邻接表结构的优化。边集数组更多考虑的是对边的关注。通常稠密图,或读存数据较多,结构修改较少的图,用邻接矩阵要更合适,反之则应该考虑邻接表。在这里插入图片描述
  • 图的遍历分为深度和广度两种。
  • 图的三种应用:最小生成树、最短路径和有向无环图。
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值