蓝桥杯 2014地宫宝库

这篇博客介绍了如何使用动态规划算法解决一个关于小明在nxm地宫宝库中寻找k件价值最大的宝贝的问题,通过从入口向右下方向前进并考虑宝贝价值更新,实现了边界剪枝和状态转移,最终计算出获取k件宝贝的不同方案数量。
摘要由CSDN通过智能技术生成

X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

地宫的入口在左上角,出口在右下角。

小明被带到地宫的入口,国王要求他只能向右或向下行走。

走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14

思路:
从起点开始往右和往左dfs,进行边界判断和剪枝,同时可以把ans[x][y]看做ans[x+1][y]+ans[x][y+1]的和,在这个基础上进行动态规划。
学到的知识点:对数组的动态规划需要扩充纬度进行,保证每一个元素的唯一性。

using namespace std;

int n, m, k;
int data[50][50];
long long dp[50][50][14][13];

long long dfs(int x,int y,int max,int cnt){

    long long ans=0;

    if(dp[x][y][max+1][cnt]!=-1)
        return dp[x][y][max+1][cnt];
    if(cnt>k||x==n||y==m)//剪枝+判断越界
        return 0;

    if(x==n-1&&y==m-1){
        if(cnt==k)
            ans++;
        if(cnt==k-1&&data[x][y]>max)
            ans++;
        if(ans>1000000007)
            ans%=1000000007;
        return ans;
    }

    if(max<data[x][y]){//拿上
        ans+=dfs(x+1,y,data[x][y],cnt+1);
        ans+=dfs(x,y+1,data[x][y],cnt+1);
    }
    ans+=dfs(x+1,y,max,cnt);
    ans+=dfs(x,y+1,max,cnt);
    if(ans>1000000007)
        ans%=1000000007;
    dp[x][y][max+1][cnt]=ans;
    return ans;
}


int main() {
    long long ans=0;
	cin >> n >> m >> k;
	memset(dp,-1,sizeof(dp));
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < m; j++) {
            cin>>data[i][j];
		}
	}
	ans=dfs(0,0,-1,0);
	printf("%lli",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值