X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14
思路:
从起点开始往右和往左dfs,进行边界判断和剪枝,同时可以把ans[x][y]看做ans[x+1][y]+ans[x][y+1]的和,在这个基础上进行动态规划。
学到的知识点:对数组的动态规划需要扩充纬度进行,保证每一个元素的唯一性。
using namespace std;
int n, m, k;
int data[50][50];
long long dp[50][50][14][13];
long long dfs(int x,int y,int max,int cnt){
long long ans=0;
if(dp[x][y][max+1][cnt]!=-1)
return dp[x][y][max+1][cnt];
if(cnt>k||x==n||y==m)//剪枝+判断越界
return 0;
if(x==n-1&&y==m-1){
if(cnt==k)
ans++;
if(cnt==k-1&&data[x][y]>max)
ans++;
if(ans>1000000007)
ans%=1000000007;
return ans;
}
if(max<data[x][y]){//拿上
ans+=dfs(x+1,y,data[x][y],cnt+1);
ans+=dfs(x,y+1,data[x][y],cnt+1);
}
ans+=dfs(x+1,y,max,cnt);
ans+=dfs(x,y+1,max,cnt);
if(ans>1000000007)
ans%=1000000007;
dp[x][y][max+1][cnt]=ans;
return ans;
}
int main() {
long long ans=0;
cin >> n >> m >> k;
memset(dp,-1,sizeof(dp));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin>>data[i][j];
}
}
ans=dfs(0,0,-1,0);
printf("%lli",ans);
return 0;
}