【SDG精读与代码复现】More Control for Free! Image Synthesis with Semantic Diffusion Guidance【SDG】
一、前言
论文地址:Liu_More_Control_for_Free_Image_Synthesis_With_Semantic_Diffusion_Guidance_WACV_2023_paper
代码地址:https://github.com/xh-liu/SDG_code
文章核心思想:多模态的引导扩散模型进行采样。直接用训练好的非条件的扩散模型,无需重复训练。文字guided是用一个微调的CLIP模型,数据集无需文本注释。数据集是FFHQ和LSUN在这篇文章介绍了。
本文主要分为三个模块:
第一个是论文介绍模块,以更通俗易懂的方式帮助大家理解论文。
第二个是复现模块,代码的复现引导。
第三个是复现过程的代码解决方案模块,复现过程遇到有bug的可以看看。
代码的分析模块见: