数学建模
Code_King1
生命的意义在于奉献自己(追求无我),婚姻也罢、事业也罢,很多事情大都如此。
展开
-
Python有哪些作用
Python有哪些作用1、初学 Python 的人都是使用它编写爬虫程序。2、除了爬虫,也应用到web前端程序,很多网站的后台都是基于Python。3、Python 也有很多 UI 库,可以很方便地完成一个 GUI 程序。4、Python的开发效率很高,可用于科学计算。网络爬虫数据分析科学计算WEB开发常用软件开发人工智能...原创 2021-09-23 10:42:34 · 1738 阅读 · 0 评论 -
Python+Anaconda+PyCharm的安装和基本使用
Python+Anaconda+PyCharm的安装和基本使用安装python涉及到python解释器、代码编辑器和pip包管理工具这3个工具。Python相关软件下载https://pan.baidu.com/s/1rkvUDlU_mbg1Rb7X8wVJEgmxrf讲解视频:https://www.bilibili.com/video/BV1K7411c7EL?p=1...原创 2021-09-23 10:41:20 · 184 阅读 · 0 评论 -
pdf转换为word问题
pdf转换为word用word打开,只是表面的转换用网上在线工具转换才是深层次的转换原创 2021-09-23 10:38:39 · 110 阅读 · 0 评论 -
数学建模论文、代码降重小技巧
论文、代码降重小技巧(仅限于数模比赛中,且尽量不用,不建议使用)插入极小的字,改为白色模型的过程转化为流程图公式前后的汉字全部放入公式里面将优缺点等,用公式编辑器变为图片将附录变为图片(祈福PDF)代码加入自己的注释代码变量名统一替换...原创 2021-09-23 10:35:58 · 2621 阅读 · 0 评论 -
建立新冠病毒群体免疫屏障——数学建模
建立新冠病毒群体免疫屏障为了巩固经济增长基础、保障国内国际双循环,中国政府实行的是严格封控管理新冠及其变种病毒的扩散蔓延,并在全国进行全人群的新冠病毒疫苗接种,以建立最大规模的国民群体新冠免疫屏障。1.建立传染病毒群体免疫屏障的数学模型,说明疫苗接种率的控制对构筑免疫屏障的作用。在此基础上考虑疫苗的有效性问题和病毒的变异问题对免疫屏障的可能影响。讨论免疫屏障和物理隔离对于整个社会的代价及收益的评价。2.以某个中国大城市的人口规模、产业结构、城市布局等实际情况为例,考虑采取怎样的步骤、需要多大成本、多长原创 2021-08-19 09:55:15 · 2217 阅读 · 0 评论 -
鱼类洄游问题
鱼类洄游问题近 30 年来,我国建设完成一批 100m 以上高坝和 100 万 kW 级水利水电枢纽工程,如长江三峡工程、黄河小浪底工程、红水河龙滩工程、清江水布垭工程和雅 砻江二滩工程等。但水利水电工程的建设往往对水生生物产生影响。我国江河湖泊众多,生态环境类型复杂多样,水生生物多样性极为丰富,在世界生物多样性中占据重要地位。水利水电工程的修建破坏了天然河流的生态连通性,阻隔了鱼类上溯洄游通道,破坏了鱼类的生存繁殖和基因交流。这些不利于影响已经成为水利水电开发的主要生态环境制约因素。西南源区原创 2021-08-16 12:25:33 · 761 阅读 · 0 评论 -
劳动力工资调整模型的探讨——数学建模
劳动力工资调整模型的探讨——数学建模近年来,“用工荒”在全国范围蔓延,似乎成为一个风潮。虽然劳动力价格一路飙升,一方面工厂招工难、留人难。另一方面每年有大量的新生就业人员找不到就业岗位。因此,提高工人工资、提高劳动报酬在初次分配中的比重已经刻不容缓。居民收入分为很多种,其中劳动力工资收入是我们主要关注的一种基本收入。提高劳动力工资收入将是一个复杂的系统工程。提高工资过慢,会影响低收入劳动者及其家庭的基本生活水平,甚至出现用工荒。但如果提高得过快过多,则会加重企业负担,可能导致企业裁员,从而不利原创 2021-08-13 21:59:00 · 1389 阅读 · 0 评论 -
某岛礁群物资补给
某岛礁群物资补给某海域诸岛礁距离大陆较远,位置相对分散,靠泊条件各异,物资需求与储存量也各不相同,研究制定科学合理,安全高效的补给策略,是有关部门关注的重要课题。通常情况下,由有关部门根据实际需求,以一个月为一个补给周期,制定补给方案,分别由不同型号的补给船和运输机运送所需要物资,回程运回垃圾及其他材料等,补给方案就包括补给船(或运输机)种类,补给路线,数量,转运方式,物资装卸与回收材料的数量等。由于各岛礁的靠泊港口规模不同,对于靠泊港口规模大的,补给船可直接补给,对于规模小的岛礁,补给船可与原创 2021-08-13 21:55:27 · 692 阅读 · 0 评论 -
2021 华数杯全国大学生数学建模竞赛C题——电动汽车目标客户销售策略研究
C题 电动汽车目标客户销售策略研究汽车产业是国民经济的重要支柱产业,而新能源汽车产业是战略性新兴产业。大力发展以电动汽车为代表的新能源汽车是解决能源环境问题的有效途径,市场前景广阔。但是,电动汽车毕竟是一个新兴的事物,与传统汽车相比,消费者在一些领域,如电池问题,还是存在着一些疑虑,其市场销售需要科学决策。某汽车公司最新推出了三款品牌电动汽车,包括合资品牌(用1表示)、自主品牌(用2表示)和新势力品牌(用3表示)。为研究消费者对电动汽车的购买意愿,制定相应的销售策略,销售部门邀请了1964位目标客户对三原创 2021-08-06 09:11:54 · 5711 阅读 · 0 评论 -
2021 华数杯全国大学生数学建模竞赛B题——进出口公司的货物装运策略
B题 进出口公司的货物装运策略进出口公司经常需要将销售的货物通过货运飞机进行运输。货运飞机有大、中、小三种类型,每一种飞机均有前、中、后三个货舱,每个货舱有最大容积、最大载重量的限制。每种货物可以在一个或多个货舱中任意分布,多种货物可以混装。为了保证飞机飞行平稳,三个货舱中实际载重必须与其最大载重成比例。详细数据见附件1。销售的货物有HW1-HW10等10种,每件货物均为长方体,货物尺寸、体积(立方米)、重量(吨)、运输单价均已知。进出口公司为了精确营销,收集了前50个周期的每种货物的销售量以原创 2021-08-06 09:05:43 · 7257 阅读 · 2 评论 -
2021华数杯全国大学生数学建模竞赛A题——电动汽车无线充电优化匹配研究
A 题 电动汽车无线充电优化匹配研究电动汽车以环境污染小、噪音低、能源利用效率高、维修方便等优势深受消费者青睐。但现有电动汽车的有线充电方式操作复杂,且存在安全隐患,因此采用无线充电方式对电动汽车进行快速、安全、方便的充电,成为了电动汽车行业所追求的目标。目前的电动汽车无线充电示意图如图 1 所示。当电动汽车停靠在特定位置时,电网通过地下的发射机构发射高频交变磁场对电动汽车进行无线充电,具有操作方便、空间占用小等优点,但是目前电动汽车生产厂家众多,无线充电必须满足“专车专用”的原则,即专有车型原创 2021-08-06 09:04:32 · 4530 阅读 · 0 评论 -
数学建模——智能优化之遗传算法详解Python代码
数学建模——智能优化之遗传算法详解Python代码import numpy as npimport matplotlib.pyplot as pltfrom matplotlib import cmfrom mpl_toolkits.mplot3d import Axes3DDNA_SIZE = 24POP_SIZE = 200CROSSOVER_RATE = 0.8MUTATION_RATE = 0.005N_GENERATIONS = 50X_BOUND = [-3, 3]Y原创 2021-07-25 09:55:01 · 1006 阅读 · 0 评论 -
数学建模——主成分分析算法详解Python代码
数学建模——主成分分析算法详解Python代码import matplotlib.pyplot as plt #加载matplotlib用于数据的可视化from sklearn.decomposition import PCA #加载PCA算法包from sklearn.datasets import load_iris data=load_iris()y=data.targetx=data.datapca=PCA(n_component原创 2021-07-25 09:53:44 · 1677 阅读 · 0 评论 -
数学建模——智能优化之模拟退火模型详解Python代码
数学建模——智能优化之模拟退火模型详解Python代码#本功能实现最小值的求解#from matplotlib import pyplot as pltimport numpy as npimport randomimport mathplt.ion()#这里需要把matplotlib改为交互状态#初始值设定hi=3lo=-3alf=0.95T=100#目标函数def f(x): return 11*np.sin(x)+7*np.cos(5*x)##注意这里要是np原创 2021-07-25 09:51:45 · 416 阅读 · 0 评论 -
数学建模——智能优化之粒子群模型详解Python代码
数学建模——智能优化之粒子群模型详解Python代码import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Ddef fit_fun(x): # 适应函数 return sum(100.0 * (x[0][1:] - x[0][:-1] ** 2.0) ** 2.0 + (1 - x[0][:-1]) ** 2.0)class Particle: # 初原创 2021-07-25 09:50:37 · 446 阅读 · 0 评论 -
数学建模——支持向量机模型详解Python代码
数学建模——支持向量机模型详解Python代码from numpy import *import randomimport matplotlib.pyplot as pltimport numpy def kernelTrans(X,A,kTup): # 核函数(此例未使用) m,n=shape(X) K = mat(zeros((m,1))) if kTup[0] =='lin': K=X*A.T elif原创 2021-07-25 09:48:49 · 1241 阅读 · 7 评论 -
数学建模——一维、二维插值模型详解Python代码
数学建模——一维、二维插值模型详解Python代码一、一维插值# -*-coding:utf-8 -*-import numpy as npfrom scipy import interpolateimport pylab as plx=np.linspace(0,10,11)#x=[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]y=np.sin(x)xnew=np.linspace(0,10,101)pl.plot(x,原创 2021-07-25 09:46:37 · 1029 阅读 · 3 评论 -
数学建模——线性规划模型详解Python代码
数学建模——线性规划模型详解Python代码标准形式为:min z=2X1+3X2+xs.tx1+4x2+2x3>=83x1+2x2>=6x1,x2,x3>=0上述线性规划问题Python代码import numpy as npfrom scipy.optimize import linprogc = np.array([2, 3, 1])A_up = np.array([[-1, -4, -2], [-3, -2, 0]])b_up = np.array([-8原创 2021-07-25 09:44:03 · 1978 阅读 · 1 评论 -
数学建模_随机森林分类模型详解Python代码
数学建模_随机森林分类模型详解Python代码随机森林需要调整的参数有:(1) 决策树的个数(2) 特征属性的个数(3) 递归次数(即决策树的深度)'''from numpy import inffrom numpy import zerosimport numpy as npfrom sklearn.model_selection import train_test_split #生成数据集。数据集包括标签,全包含在返回值的dataset上def get_Datas原创 2021-07-25 09:42:56 · 2196 阅读 · 3 评论 -
数学建模——逻辑回归模型Python代码
数学建模——逻辑回归模型详解Python代码程序用到的测试数据:链接:https://pan.baidu.com/s/1LGD1MAxk2lxO93smSPNyZg提取码:uukr代码正文import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport ospath='data'+os.sep+'Logireg_data.txt'pdData=pd.read_csv(path,header=None,na原创 2021-07-21 17:43:58 · 2010 阅读 · 4 评论 -
数学建模——决策树分类模型Python代码
数学建模——决策树分类模型Python代码这个监督式学习算法通常被用于分类问题。令人惊奇的是,它同时适用于分类变量和连续因变量。在这个算法中,我们将总体分成两个或更多的同类群。这是根据最重要的属性或者自变量来分成尽可能不同的组别。想要知道更多,可以阅读:简化决策树。在上图中你可以看到,根据多种属性,人群被分成了不同的四个小组,来判断 “他们会不会去玩”。为了把总体分成不同组别,需要用到许多技术,比如说 Gini、Information Gain、Chi-square、entropy。理解决策树工作机制原创 2021-07-21 17:39:42 · 1212 阅读 · 1 评论 -
数学建模——灰色预测模型Python代码
数学建模——灰色预测模型Python代码“”"Spyder EditorThis is a temporary script file.“”"import numpy as npimport mathhistory_data = [724.57,746.62,778.27,800.8,827.75,871.1,912.37,954.28,995.01,1037.2]n = len(history_data)X0 = np.array(history_data)#累加生成history_原创 2021-07-21 17:35:42 · 9942 阅读 · 7 评论 -
数学建模——层次分析法Python代码
数学建模——层次分析法Python代码import numpy as npclass AHP:“”"相关信息的传入和准备“”"def __init__(self, array): ## 记录矩阵相关信息 self.array = array ## 记录矩阵大小 self.n = array.shape[0] # 初始化RI值,用于一致性检验 self.RI_list = [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.原创 2021-07-21 17:33:33 · 3163 阅读 · 0 评论 -
数学建模——TOPSIS综合评价模型Python代码
数学建模——TOPSIS综合评价模型Python代码正常代码import numpy as np # 导入numpy包并将其命名为np##定义正向化的函数def positivization(x,type,i):x:需要正向化处理的指标对应的原始向量typ:指标类型(1:极小型,2:中间型,3:区间型)i:正在处理的是原始矩阵的哪一列if type == 1: #极小型 print("第",i,"列是极小型,正向化中...") posit_x = x.max(0)-x原创 2021-07-21 17:31:51 · 2583 阅读 · 0 评论 -
数学建模——K-means聚类模型Python代码
一、简介K均值聚类算法是先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。二、1.便于理解,首先创建一个明显分为2类20*2的例子(每一列为一个变量共2个变量,每一行为原创 2021-07-21 17:30:09 · 1605 阅读 · 1 评论 -
数学建模——BP神经网络模型Python代码
数学建模——BP神经网络模型Python代码# -*- coding: utf-8 -*-"""Created on Mon Oct 1 22:15:54 2018@author: Heisenberg"""import numpy as npimport mathimport randomimport stringimport matplotlib as mplimport matplotlib.pyplot as plt #random.seed(0) #当我们设置相同的s原创 2021-07-21 17:27:18 · 5758 阅读 · 4 评论 -
数学建模——ARIMA时间序列预测模型Python代码
import pandas # 读取数据,指定日期为索引列 data = pandas.read_csv( 'D:\\DATA\\pycase\\number2\\9.3\\Data.csv' , index_col='日期') # 绘图过程中 import matplotlib.pyplot as plt # 用来正常显示中文标签 plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示负号 plt.r..原创 2021-07-21 17:25:31 · 8975 阅读 · 3 评论 -
交通数学建模B题
交通数学建模B题现实的道路交通基本都是多车道的交通情况,而且是异质的交通流,即车辆大小(例如,小汽车与货车)各异,车辆动力性能(例如,最大加、减速度,最大速度等)各异。因此,在开边界条件下,请利用元胞自动机的建模思想建立双车道的异质交通流仿真模型,并仿真分析如下问题:(1)不同换道概率对各车道交通流时空位置图的影响;(2)不同换道 概率对各车道基本图(流量- 速度密度关系)的影响;(3)不同车辆构成比例对各车道交通流时空位置图的影响;(4) 不同车辆构成比例对各车道交通基本图(流原创 2021-07-10 18:09:49 · 2135 阅读 · 3 评论 -
数学建模资料分享群——2群
原创 2021-07-10 17:23:35 · 431 阅读 · 0 评论 -
经典优化问题
医院外科手术类型分三类,简称为大手术,中手术,小手术,每种手术需要的人数和费用见下表当前医院人员其本情况:高级医师21人,普通医师44人,只有高级医师才能充当大、中手术的主刀医师;护士100人,其中只有60人可以充当器械护士;麻醉师30人。假设各种外科手术的病人足够多,每个医生护士的工作时间都是一天,(1)如何安排每天的日常手术使得其经济效益最大?并对结果进行必要的分析。(2)如果医院要在现有基础上适当提高做小手术的台数,在现有人员的基础上,需要招聘哪方面的人才,并进行简短分析。(3)某天的大手术原创 2021-06-01 21:02:14 · 368 阅读 · 0 评论 -
数学建模——评卷问题
评卷问题在一类没有标准答案的答卷评卷中,如平时考试中对语文作文成绩、英语作文成绩的评分,中期检查时对学生论文的评分,不同评阅人对同一-份答卷给出的分数,出现一定范围内的偏差是正常的.但是,由于众多客观、主观因素的影响,某些答卷人会存在以下异常现象:●打分普遍偏高或偏低,导致他评阅的所有答卷的平均分都明显高于或低于总体的平均分.●打分范围过窄,区分度太小,导致他评阅的所有答卷的分数范围明显小于总体的分数范围.在评阅过程中,组织者可以通过一定的程序,让每位评卷人随机的评阅若干份答卷,并且同一原创 2021-05-30 13:32:13 · 4849 阅读 · 16 评论 -
2021第六届数维杯大学生数学建模竞赛赛题_C 运动会优化比赛模式探索
运动会优化比赛模式探索5月中旬恰好是各个大学召开每年一届的运动的时间节点。运动会已成为了大学校园里一道亮丽的风景线,运动会上振奋人心的开幕式、拍手称赞的比赛、激动人心的颁奖仪式都给参加运动会的同学们带来了一次精神上的享受。每一次运动会举办的过程中运动场上运动员奋勇拼搏,用自己的努力证明自己,展示自己的速度与激情。运动场下各班级啦啦队为选手们加油呐喊,展现着青春活力,运动会依然成为了校园里不可或缺的一部分。运动会不仅是同学们展示自己的舞台,更为重要的这是难得的提高大学生团队意识与身体素质的良机。然而,不同原创 2021-05-27 20:04:50 · 2847 阅读 · 2 评论 -
2021年第二届“华数杯”全国大学生数学建模竞赛
一、比赛背景为了培养学生的创新意识及运用数学方法和计算机技术解决实际问题的能力,中国未来研究会大数据与数学模型专业委员会决定举办华数杯全国大学生数学建模竞赛。竞赛的目标是为培养大学生的科学精神及运用数学解决实际问题的能力,为创新性人才的培养奠定基础,为各行各业培养和选拔优秀的人才。二、组织单位主办单位:华数杯全国大学生数学建模竞赛组委会、中国未来研究会大数据与数学模型专业委员会中国未来研究会是中国科协下属团体,国家一级学会,成立于1979年。发起单位是国家科委、中国科协、中国科学院、中国社科院、教育原创 2021-05-27 12:34:49 · 6756 阅读 · 0 评论 -
2021第六届数维杯大学生数学建模竞赛赛题_B 中小城市地铁运营与建设优化设计
B第一时间实时公布赛题原创 2021-05-27 12:16:38 · 2844 阅读 · 1 评论 -
2021第六届数维杯大学生数学建模竞赛赛题_A 外卖骑手的送餐危机
A原创 2021-05-27 12:15:23 · 5386 阅读 · 0 评论 -
道路铺设的规划问题
道路铺设的规划问题某地进行一项道路建设项目,在R1、R2、R3、R4四点间修建一条 宽15m,平均铺设厚度为0.5m的公路。为了铺设这条道路,需要从S1、 S2、S3三个采石场采购铺路碎石。碎石的采购价格为: S1: 65元/立方米,S2:60元/立方米, S3: 56元/立方米。 ,运出的碎石已满足工程需要,不必再进-步进行粉碎。S1、S2、 S3与公路之间原来没有道路可以利用,需铺设临时道路。临时道路宽为4m,平均铺设厚度为0.1m。而在R2、R3之间有原来的道路可以利用,m2处有- -座原创 2021-05-26 13:59:35 · 301 阅读 · 0 评论 -
第十三届“华中杯”大学生数学建模挑战赛题目 B 题 技术问答社区重复问题识别
B 题 技术问答社区重复问题识别技术社区问答平台作为用户互相分享交流的社区平台,近年来逐步成为用户寻找技术类疑难解答的首要渠道。 各分类技术性问题的文本数据量不断攀升,给问答平台的日常运营维护带来了挑战。随着新用户的不断加入以及用户数量的增加,新用户提出的疑问可能已经在平台上被其他用户提出并解答过,但由于技术性问题的复杂性,各个用户提问的切入角度不同,用问题标题关键词匹配的搜索系统无法指引新用户至现有的问题。于是,新用户会提出重复的问题,而这些问题会进一步增加平台上的文本量,导致用户重复响应相同的问题。对原创 2021-05-26 13:54:12 · 1729 阅读 · 1 评论 -
第十三届“华中杯”大学生数学建模挑战赛题目 A 题 马赛克瓷砖选色问题
A 题 马赛克瓷砖选色问题马赛克瓷砖是一种尺寸较小(常见规格为边长不超过 5cm)的正方形瓷砖,便于在非平整的表面铺设,并且容易拼接组合出各种文字或图案。但是受工艺和成本的限制,瓷砖的颜色只能是有限的几种。用户在拼接图案时,首先要根据原图中的颜色,选出颜色相近的瓷砖,才能进行拼接。某马赛克瓷砖生产厂只能生产 22 种颜色(见附件 1)的马赛克瓷砖。该厂要开发一个软件,能够根据原始图片的颜色,自动找出颜色最接近的瓷砖,以减少客户人工选色的工作量。该厂希望你们团队提供确定原始颜色与瓷砖颜色对应关系的算法。假原创 2021-05-26 13:50:05 · 4254 阅读 · 2 评论 -
波士顿房价问题代码
波士顿房价问题波士顿住房数据由哈里森和鲁宾菲尔德于1978年Harrison and Rubinfeld [1]收集。它包括了波士顿大区每个调查行政区的506个观察值。1980年Belsley et al. [2]曾对此数据做过分析。数据一共14列,每一列的含义分别如下:X1: 人均犯罪率X2: 大块占地住宅区比例X3: 非零售商业占地比例(英亩)X4: 查尔斯河虚拟变量(如果靠近河流用1表示;否则用0表示)X5: 氮氧化物浓度X6: 每户平均房间数X7: 1940年前建造的户主所有房比例原创 2021-05-26 13:39:26 · 2943 阅读 · 0 评论 -
校车运输空返问题
校车运输空返问题某学校每天有教职工从老校区乘车到新校区工作,工作后大多数人会返回。后勤集团每天会安排车辆在新老校区之间往返运行。但某些时段新老校区需要乘车的人数不均衡,如早上主要是老校区的教职工乘车到新校区,中午和下午下班时主要是教职工从老校区返回新校区。由于车辆有限,有时候为了满足当前校区车辆的需求,需要从另一校区调度空车返回(称为空返)。如何使空返的车辆数尽量少是后勤集团十分关心的问题。该校班车运行时刻表如下:一、周一至周五1.老校区到新校区7:00,8:00,9:20、10:00、11:00原创 2021-05-26 13:38:12 · 896 阅读 · 2 评论